【題目】已知的兩個(gè)頂點(diǎn)的坐標(biāo)分別為,,且所在直線的斜率之積等于,記頂點(diǎn)的軌跡為.
(Ⅰ)求頂點(diǎn)的軌跡的方程;
(Ⅱ)若直線與曲線交于兩點(diǎn),點(diǎn)在曲線上,且為的重心(為坐標(biāo)原點(diǎn)),求證:的面積為定值,并求出該定值.
【答案】(Ⅰ)(Ⅱ)證明見解析,定值為.
【解析】
(Ⅰ)設(shè),根據(jù)題意列方程即可求解.
(Ⅱ)設(shè),,,由為的重心,可得,從而,,將直線與橢圓方程聯(lián)立整理利用韋達(dá)定理求出點(diǎn)坐標(biāo),代入橢圓方程可得,再利用弦長公式以及三角形的面積公式即可求解.
(Ⅰ)設(shè),
因?yàn)辄c(diǎn)的坐標(biāo)為,所以直線的斜率為
同理,直線的斜率為
由題設(shè)條件可得,.
化簡(jiǎn)整理得,頂點(diǎn)的軌跡的方程為:.
(Ⅱ)設(shè),,,
因?yàn)?/span>為的重心,所以,
所以,,
由得,
,,
,,∴,
又點(diǎn)在橢圓上,所以,
∴,
因?yàn)?/span>為的重心,所以是的倍,
,
原點(diǎn)到直線的距離為,
.
所以,
所以,的面積為定值,該定值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】雙曲線E:(,)的左、右焦點(diǎn)分別為,,已知點(diǎn)為拋物線C:的焦點(diǎn),且到雙曲線E的一條漸近線的距離為,又點(diǎn)P為雙曲線E上一點(diǎn),滿足.則
(1)雙曲線的標(biāo)準(zhǔn)方程為______;
(2)的內(nèi)切圓半徑與外接圓半徑之比為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱中,,,,為棱上的動(dòng)點(diǎn).
(1)若為的中點(diǎn),求證:平面;
(2)若平面平面ABC,且是否存在點(diǎn),使二面角的平面角的余弦值為?若存在,求出的值,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4-4:極坐標(biāo)與參數(shù)方程]
在直角坐標(biāo)系中,曲線的參數(shù)方程為(是參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求曲線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;
(2)若射線 與曲線交于,兩點(diǎn),與曲線交于,兩點(diǎn),求取最大值時(shí)的值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若,求的單調(diào)區(qū)間;
(2)證明:(i);
(ii)對(duì)任意,對(duì)恒成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某高校為增加應(yīng)屆畢業(yè)生就業(yè)機(jī)會(huì),每年根據(jù)應(yīng)屆畢業(yè)生的綜合素質(zhì)和學(xué)業(yè)成績(jī)對(duì)學(xué)生進(jìn)行綜合評(píng)估,已知某年度參與評(píng)估的畢業(yè)生共有2000名.其評(píng)估成績(jī)近似的服從正態(tài)分布.現(xiàn)隨機(jī)抽取了100名畢業(yè)生的評(píng)估成績(jī)作為樣本,并把樣本數(shù)據(jù)進(jìn)行了分組,繪制了如下頻率分布直方圖:
(1)求樣本平均數(shù)和樣本方差(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(2)若學(xué)校規(guī)定評(píng)估成績(jī)超過82.7分的畢業(yè)生可參加三家公司的面試.
用樣本平均數(shù)作為的估計(jì)值,用樣本標(biāo)準(zhǔn)差作為的估計(jì)值.請(qǐng)利用估計(jì)值判斷這2000名畢業(yè)生中,能夠參加三家公司面試的人數(shù);
附:若隨機(jī)變量,則,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)常數(shù),函數(shù)
(1)當(dāng)時(shí),判斷在上單調(diào)性,并加以證明;
(2)當(dāng)時(shí),研究的奇偶性,并說明理由;
(3)當(dāng)時(shí),若存在區(qū)間使得在上的值域?yàn)?/span>,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐中,平面,四邊形是矩形,,,分別是棱,,的中點(diǎn).
(1)求證:平面;
(2)若,,求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列、、,對(duì)于給定的正整數(shù),記,.若對(duì)任意的正整數(shù)滿足:,且是等差數(shù)列,則稱數(shù)列為“”數(shù)列.
(1)若數(shù)列的前項(xiàng)和為,證明:為數(shù)列;
(2)若數(shù)列為數(shù)列,且,求數(shù)列的通項(xiàng)公式;
(3)若數(shù)列為數(shù)列,證明:是等差數(shù)列 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com