【題目】在四棱錐中,平面,四邊形是矩形,,分別是棱,的中點(diǎn).

(1)求證:平面;

(2)若,,求點(diǎn)到平面的距離.

【答案】(1)證明見(jiàn)解析;(2)

【解析】

1)連接,證明平面平面,即可說(shuō)明平面

2)先計(jì)算出,再利用等體積法,即可求出點(diǎn)到平面的距離.

(1)證明:連接,∵在矩形中,分別是,中點(diǎn),

,,∴四邊形是平行四邊形,∴.

的中點(diǎn),∴.

平面,平面,

平面平面.

,∴平面平面.

平面,∴平面.

(2)解:法一:∵平面,,∴平面.

過(guò)在平面內(nèi),作,垂足為,則.

,∴平面,∴長(zhǎng)是點(diǎn)到平面的距離.

在矩形中,中點(diǎn),,,.

.

,,∴,

即點(diǎn)到平面的距離為.

法二:設(shè)到平面的距離為,

在矩形中,,,∴.

平面,平面,∴,

,∴,,

的面積為.

的面積為,

,∴,即點(diǎn)到平面的距離為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】今年1月至2月由新型冠狀病毒引起的肺炎病例陡然增多,為了嚴(yán)控疫情傳播,做好重點(diǎn)人群的預(yù)防工作,某地區(qū)共統(tǒng)計(jì)返鄉(xiāng)人員人,其中歲及以上的共有.人中確診的有名,其中歲以下的人占.

1)請(qǐng)將下面的列聯(lián)表補(bǔ)充完整,并判斷是否有%的把握認(rèn)為是否確診患新冠肺炎與年齡有關(guān);

確診患新冠肺炎

未確診患新冠肺炎

合計(jì)

50歲及以上

40

50歲以下

合計(jì)

10

100

2)為了研究新型冠狀病毒的傳染源和傳播方式,從名確診人員中隨機(jī)抽出人繼續(xù)進(jìn)行血清的研究,表示被抽取的人中歲以下的人數(shù),求的分布列以及數(shù)學(xué)期望.

參考表:

0.10

0.05

0.010

0.005

0.001

2.706

3.841

6.635

7.879

10.828

參考公式:,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知的兩個(gè)頂點(diǎn)的坐標(biāo)分別為,且所在直線的斜率之積等于,記頂點(diǎn)的軌跡為.

Ⅰ)求頂點(diǎn)的軌跡的方程;

Ⅱ)若直線與曲線交于兩點(diǎn),點(diǎn)在曲線上,且的重心(為坐標(biāo)原點(diǎn)),求證:的面積為定值,并求出該定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),

(Ⅰ)討論函數(shù)的單調(diào)性;

(Ⅱ)當(dāng)時(shí),恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù),其中.

(1)當(dāng)時(shí),的零點(diǎn)個(gè)數(shù);

(2)若的整數(shù)解有且唯一,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一對(duì)夫婦為了給他們的獨(dú)生孩子支付將來(lái)上大學(xué)的費(fèi)用,從孩子一周歲生日開(kāi)始,每年到銀行儲(chǔ)蓄元一年定期,若年利率為保持不變,且每年到期時(shí)存款(含利息)自動(dòng)轉(zhuǎn)為新的一年定期,當(dāng)孩子18歲生日時(shí)不再存入,將所有存款(含利息)全部取回,則取回的錢(qián)的總數(shù)為  

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知棱臺(tái),平面平面,,D,E分別是的中點(diǎn)。

)證明:;

)求與平面所成角的余弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中國(guó)古代十進(jìn)制的算籌計(jì)數(shù)法,在數(shù)學(xué)史上是一個(gè)偉大的創(chuàng)造,算籌實(shí)際上是一根根同長(zhǎng)短的小木棍.如圖,是利用算籌表示數(shù)的一種方法.例如:3可表示為“”,26可表示為“”.現(xiàn)有6根算籌,據(jù)此表示方法,若算籌不能剩余,則可以用9數(shù)字表示兩位數(shù)的個(gè)數(shù)為  

A.13B.14C.15D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在多面體中,平面,平面平面是邊長(zhǎng)為2的等邊三角形,,

1)證明:平面平面

2)求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案