12.y=$\frac{\sqrt{sinx}+lgcosx}{tanx}$的定義域為(2kπ,$\frac{π}{2}$+2kπ),k∈Z..

分析 根據(jù)二次根式的被開方數(shù)大于或等于0,對數(shù)的真數(shù)大于0,分母不為0,列出不等式組求出解集即可.

解答 解:∵y=$\frac{\sqrt{sinx}+lgcosx}{tanx}$,
∴$\left\{\begin{array}{l}{sinx≥0}\\{cosx>0}\\{tanx≠0}\end{array}\right.$,
解得2kπ<x<$\frac{π}{2}$+2kπ,k∈Z;
∴y的定義域為(2kπ,$\frac{π}{2}$+2kπ),k∈Z.
故答案為:(2kπ,$\frac{π}{2}$+2kπ),k∈Z.

點評 本題考查了根據(jù)函數(shù)的解析式求定義域的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知點P是圓O外的一點,過P作圓O的切線PA,PB,切點為A,B,過P作一割線交圓O于點E,F(xiàn),若2PA=PF,取PF的中點D,連接AD,并延長交圓于H.
(1)求證:O,A,P,B四點共圓;
(2)求證:PB2=2AD•DH.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知函數(shù)f(x)=$\frac{lnx+(x-b)^{2}}{x}$(b∈R).若存在x∈[$\frac{1}{2}$,2],使得f(x)>-x•f′(x),則實數(shù)b的取值范圍是(-∞,$\frac{9}{4}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知$\overrightarrow{a}$,$\overrightarrow$是兩個單位向量,且|k$\overrightarrow{a}$+$\overrightarrow$|=$\sqrt{3}$|$\overrightarrow{a}$-k$\overrightarrow$|(k>0).
(1)求$\overrightarrow{a}$,$\overrightarrow$的夾角的范圍;
(2)當(dāng)$\overrightarrow{a}$,$\overrightarrow$的夾角為30°時,求實數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知以點C(t,$\frac{3}{t}}$)(t∈R,t≠0)為圓心的圓過原點O.
(Ⅰ) 設(shè)直線3x+y-4=0與圓C交于點M、N,若|OM|=|ON|,求圓C的方程;
(Ⅱ) 在(Ⅰ)的條件下,設(shè)B(0,2),且P、Q分別是直線l:x+y+2=0和圓C上的動點,求|PQ|-|PB|的最大值及此時點P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)i為虛數(shù)單位,a,b∈R,則“a=0”是“復(fù)數(shù)a+bi是純虛數(shù)”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分又不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知a,b,c滿足a<b<c,且ac<0,則下列不等關(guān)系中不滿足恒成立條件的是(  )
A.$\frac{b-c}{a}$>0B.$\frac{a}{c}$<$\frac{c}$C.$\frac{c-a}{ac}$<0D.$\frac{{c}^{2}}{a}$<$\frac{^{2}}{a}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的焦距為2$\sqrt{3}$,長軸長為4.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)如圖,過坐標(biāo)原點O作兩條互相垂直的射線,與橢圓C交于A,B兩點.設(shè)A(x1,y1),B(x2,y2),直線AB的方程為y=-2x+m(m>0),試求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知Sn為等差數(shù)列{an}的前n項和,a1=-1,S4=14,則a4等于( 。
A.2B.4C.6D.8

查看答案和解析>>

同步練習(xí)冊答案