分析 假設(shè)tan3°為有理數(shù),由條件和和角的正切公式可以推出矛盾,可得假設(shè)不正確,從而命題得證.
解答 證明:假設(shè)tan3°為有理數(shù),則
根據(jù)tan(a+b)=$\frac{tana+tanb}{1-tanatanb}$,有tan6°=$\frac{tan3°+tan3°}{1-tan3°tan3°}$也是有理數(shù),
繼而有tan9°也為有理數(shù),可得tan30°也為有理數(shù),
而tan30°=$\sqrt{3}$是一個無理數(shù),所以假設(shè)不成立,
所以,tan3°為有理數(shù)不成立,即tan3°為無理數(shù).
點評 本題主要考查用反證法證明數(shù)學(xué)命題,推出矛盾,是解題的關(guān)鍵和難點,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x>60?,i=i+1 | B. | x<60?,i=i+1 | C. | x>60?,i=i-1 | D. | x<60?,i=i-1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{4-2\sqrt{2}}$ | B. | $\sqrt{5-2\sqrt{2}}$ | C. | $\sqrt{4+2\sqrt{2}}$ | D. | $\sqrt{5+2\sqrt{2}}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | i>3? | B. | i<5? | C. | i>4? | D. | i<4? |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 5 | B. | 6 | C. | 7 | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 72 | B. | 324 | C. | 648 | D. | 1296 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com