【題目】在經(jīng)濟學(xué)中,函數(shù)f(x)的邊際函數(shù)為Mf(x),定義為Mf(x)=f(x+1)﹣f(x).已知某服裝公司每天最多
生產(chǎn)100件.生產(chǎn)x件的收入函數(shù)為R(x)=300x﹣2x2(單位元),其成本函數(shù)為C(x)=50x+300(單位:元),利潤等于收入與成本之差.
(1)求出利潤函數(shù)p(x)及其邊際利潤函數(shù)Mp(x);
(2)分別求利潤函數(shù)p(x)及其邊際利潤函數(shù)Mp(x)的最大值;
(3)你認為本題中邊際利潤函數(shù)Mp(x)最大值的實際意義是什么?
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若存在不為零的常數(shù),使得函數(shù)對定義域內(nèi)的任一均有,則稱函數(shù)為周期函數(shù),其中常數(shù)就是函數(shù)的一個周期.
(1)證明:若存在不為零的常數(shù)使得函數(shù) 對定義域內(nèi)的任一均有,則此函數(shù)是周期函數(shù).
(2)若定義在上的奇函數(shù)滿足,試探究此函數(shù)在區(qū)間
內(nèi)零點的最少個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校為了調(diào)查喜歡語文學(xué)科與性別的關(guān)系,隨機調(diào)查了一些學(xué)生情況,具體數(shù)據(jù)如表:
調(diào)查統(tǒng)計 | 不喜歡語文 | 喜歡語文 |
男 | 13 | 10 |
女 | 7 | 20 |
為了判斷喜歡語文學(xué)科是否與性別有關(guān)系,根據(jù)表中的數(shù)據(jù),得到K2的觀測值k= ≈4.844,因為k≥3.841,根據(jù)下表中的參考數(shù)據(jù):
P(K2≥k0) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
判定喜歡語文學(xué)科與性別有關(guān)系,那么這種判斷出錯的可能性為( )
A.95%
B.50%
C.25%
D.5%
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=alnx﹣x2+1. (Ⅰ)若曲線y=f(x)在x=1處的切線方程為4x﹣y+b=0,求實數(shù)a和b的值;
(Ⅱ)討論函數(shù)f(x)的單調(diào)性;
(Ⅲ)若a<0,且對任意x1 , x2∈(0,+∞),x1≠x2 , 都有|f(x1)﹣f(x2)|>|x1﹣x2|,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】命題p:關(guān)于x的不等式x2+(a﹣1)x+a2≤0的解集為;命題q:函數(shù)f(x)=(4a2+7a﹣1)x是增函數(shù),若¬p∧q為真,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=cos(+x)cos(-x),g(x)=sin 2x-.
(1)求函數(shù)f(x)的最小正周期;
(2)求函數(shù)h(x)=f(x)-g(x)的最大值,并求使h(x)取得最大值的x的集合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)的圖象如圖所示,為了得到函數(shù)的圖象,可以把函數(shù)的圖象( )
A. 每個點的橫坐標(biāo)縮短到原來的(縱坐標(biāo)不變),再向左平移個單位
B. 每個點的橫坐標(biāo)縮短到原來的2倍(縱坐標(biāo)不變),再向左平移個單位
C. 先向左平移個單位,再把所得各點的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變)
D. 先向左平移個單位,再把所得各點的橫坐標(biāo)伸長到原來的(縱坐標(biāo)不變)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知線段的端點,端點在圓上運動
(Ⅰ)求線段的中點的軌跡方程.
(Ⅱ) 設(shè)動直線與圓交于兩點,問在軸正半軸上是否存在定點,使得直線與直線關(guān)于軸對稱?若存在,請求出點的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于函數(shù)y=3sin(2x + )
(1)求最小正周期、對稱軸和對稱中心;
(2)簡述此函數(shù)圖象是怎樣由函數(shù)y=sinx的圖象作變換得到的.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com