【題目】函數(shù)的圖象如圖所示,為了得到函數(shù)的圖象,可以把函數(shù)的圖象( )
A. 每個點的橫坐標縮短到原來的(縱坐標不變),再向左平移個單位
B. 每個點的橫坐標縮短到原來的2倍(縱坐標不變),再向左平移個單位
C. 先向左平移個單位,再把所得各點的橫坐標伸長到原來的2倍(縱坐標不變)
D. 先向左平移個單位,再把所得各點的橫坐標伸長到原來的(縱坐標不變)
科目:高中數(shù)學 來源: 題型:
【題目】已知點及圓.
(1)設過點的直線與圓交于兩點,當時,求以線段為直徑的圓的方程;
(2)設直線與圓交于兩點,是否存在實數(shù),使得過點的直線垂直平分弦?若存在,求出實數(shù)的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓,直線.
(1)若直線與圓交于不同的兩點,當時,求的值;
(2)若是直線上的動點,過作圓的兩條切線,切點為,探究:直線是否過定點?若過定點則求出該定點,若不存在則說明理由;
(3)若為圓的兩條相互垂直的弦,垂足為,求四邊形的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在經(jīng)濟學中,函數(shù)f(x)的邊際函數(shù)為Mf(x),定義為Mf(x)=f(x+1)﹣f(x).已知某服裝公司每天最多
生產(chǎn)100件.生產(chǎn)x件的收入函數(shù)為R(x)=300x﹣2x2(單位元),其成本函數(shù)為C(x)=50x+300(單位:元),利潤等于收入與成本之差.
(1)求出利潤函數(shù)p(x)及其邊際利潤函數(shù)Mp(x);
(2)分別求利潤函數(shù)p(x)及其邊際利潤函數(shù)Mp(x)的最大值;
(3)你認為本題中邊際利潤函數(shù)Mp(x)最大值的實際意義是什么?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,甲、乙是邊長為的兩塊正方形鋼板,現(xiàn)要將甲裁剪焊接成一個正四棱柱,將乙裁剪焊接成一個正四棱錐,使它們的全面積都等于一個正方形的面積(不計焊接縫的面積).
(1)將你的裁剪方法用虛線標示在圖中,并作簡要說明;
(2)試比較你所制作的正四棱柱與正四棱錐體積的大小,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的定義域;
(2)判斷函數(shù)的奇偶性,并證明你的結(jié)論;
(3)在函數(shù)圖像上是否存在兩個不同的點,使直線垂直軸,若存在,求出兩點坐標;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖 1,在直角梯形中, ,且.現(xiàn)以為一邊向外作正方形,然后沿邊將正方形翻折,使平面與平面垂直, 為的中點,如圖 2.
(1)求證: 平面;
(2)求證: 平面;
(3)求與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知右焦點為F(c,0)的橢圓M: =1(a>b>0)過點 ,且橢圓M關于直線x=c對稱的圖形過坐標原點.
(1)求橢圓M的方程;
(2)過點(4,0)且不垂直于y軸的直線與橢圓M交于P,Q兩點,點Q關于x軸的對稱原點為E,證明:直線PE與x軸的交點為F.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某租賃公司擁有汽車100輛.當每輛車的月租金為元時,可全部租出.當每輛車的月租金每增加50元時,未租出的車將會增加一輛.租出的車每輛每月需要維護費150元,未租出的車每輛每月需要維護費50元.若使租賃公司的月收益最大,每輛車的月租金應該定為__________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com