8.設(shè)方程$\left\{\begin{array}{l}{x=1+cosθ}\\{y=\sqrt{3}+sinθ}\end{array}\right.$(θ為參數(shù))表示的曲線為C.
(1)求曲線C上的動點(diǎn)到原點(diǎn)O的距離的最小值;
(2)點(diǎn)P為曲線C上的動點(diǎn),當(dāng)|OP|最小時(O為坐標(biāo)原點(diǎn)),求點(diǎn)P的坐標(biāo).

分析 (1)根據(jù)兩點(diǎn)間的距離公式得出距離關(guān)于θ的函數(shù),利用三角函數(shù)的性質(zhì)得出距離的最小值;
(2)將(1)中的θ值代入?yún)?shù)方程解出P點(diǎn)坐標(biāo).

解答 解:(1)設(shè)曲線C上的點(diǎn)到原點(diǎn)得距離為d,
則d2=x2+y2=(1+cosθ)2+($\sqrt{3}$+sinθ)2=5+2cosθ+2$\sqrt{3}$sinθ=5+4sin(θ+$\frac{π}{6}$).
∴當(dāng)sin(θ+$\frac{π}{6}$)=-1時,d2取得最小值1,
∴d的最小值為1.
(2)由(1)知當(dāng)θ+$\frac{π}{6}$=-$\frac{π}{2}$+2kπ即θ=-$\frac{2π}{3}$+2kπ時,|OP|最。
∴x=1+cos(-$\frac{2π}{3}$+2kπ)=$\frac{1}{2}$,y=$\sqrt{3}$+sin(-$\frac{2π}{3}$+2kπ)=$\frac{\sqrt{3}}{2}$.
∴P點(diǎn)坐標(biāo)為($\frac{1}{2}$,$\frac{\sqrt{3}}{2}$).

點(diǎn)評 本題考查了參數(shù)方程的應(yīng)用,距離公式,三角函數(shù)的性質(zhì),屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)i是虛數(shù)單位,若復(fù)數(shù)z滿足(2-5i)z=29,則z=( 。
A.2-5iB.2+5iC.-2-5iD.-2+5i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.如圖是某班8位學(xué)生詩詞比賽得分的莖葉圖,那么這8位學(xué)生得分的眾數(shù)和中位數(shù)分別為93、92.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.各項(xiàng)均為正數(shù)的等比數(shù)列{an}的前n項(xiàng)和為Sn,若a3=2,S4=5S2,則S4=$\frac{15}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.根據(jù)函數(shù)y=f(x)的圖象,求:f(0),f(3),定義域D,值域M,最值,單調(diào)減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.下列函數(shù)中,周期為π的是( 。
A.y=sin(2x-$\frac{π}{6}$)B.y=sin(x-$\frac{π}{6}$)C.y=cos(x-$\frac{π}{4}$)D.y=tan(2x+$\frac{π}{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)向量$\overrightarrow{a}$=(2,-4),$\overrightarrow$=(6,x),若|$\overrightarrow{a}+\overrightarrow$|=|$\overrightarrow{a}-\overrightarrow$|,則x=( 。
A.3B.-3C.12D.-12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)直角坐標(biāo)平面內(nèi)與兩個定點(diǎn)A(-2,0),B(2,0)的距離之差的絕對值等于2的點(diǎn)的軌跡是E,C是軌跡E上一點(diǎn),直線BC垂直于x軸,則$\overrightarrow{AC}$$•\overrightarrow{BC}$=( 。
A.-9B.-3C.3D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.若下列三個方程2x+x=0、log2x+x=0、x=1+x${\;}^{-\frac{1}{2}}$的根依次為a、b、c,則a、b、c的大小是c>b>a.

查看答案和解析>>

同步練習(xí)冊答案