9.已知函數(shù)f(x)=$\left\{\begin{array}{l}{-x^2+4x,x≤0}\\{ln(x+1),x>0}\end{array}\right.$,若函數(shù)g(x)=f(x)-mx有且只有一個(gè)零點(diǎn),則實(shí)數(shù)m的取值范圍是( 。
A.[1,4]B.(-∞,0]C.(-∞,4]D.(-∞,0]∪[1,4]

分析 若函數(shù)g(x)=f(x)-mx有且只有一個(gè)零點(diǎn),則函數(shù)f(x)與函數(shù)y=mx的圖象只有一個(gè)交點(diǎn),數(shù)形結(jié)合可得答案.

解答 解:若函數(shù)g(x)=f(x)-mx有且只有一個(gè)零點(diǎn),
則函數(shù)f(x)與函數(shù)y=mx的圖象只有一個(gè)交點(diǎn),
在同在坐標(biāo)系中畫出兩個(gè)函數(shù)的圖象如下圖所示:

∵f′(x)=$\left\{\begin{array}{l}-2x+4,x≤0\\ \frac{1}{x+1},x>0\end{array}\right.$,
故當(dāng)m∈(-∞,0]∪[1,4]時(shí),兩個(gè)函數(shù)圖象有且只有一個(gè)交點(diǎn),
即函數(shù)g(x)=f(x)-mx有且只有一個(gè)零點(diǎn),
故選:D.

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是分段函數(shù)的應(yīng)用,函數(shù)的零點(diǎn),數(shù)形結(jié)合思想,難度中檔.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.拋物線y=2x2的準(zhǔn)線方程是y=-$\frac{1}{8}$;焦點(diǎn)到準(zhǔn)線的距離為$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.若函數(shù)f(x)=ln(x),則f(e-2)等于( 。
A.-1B.-2C.-eD.-2e

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.在△ABC中,角A,B,C所對(duì)的邊分別似乎a,b,c,且a=2,2cos2$\frac{B+C}{2}$+sinA=$\frac{4}{5}$.
(1)若b=$\frac{5\sqrt{3}}{3}$,求角B;
(2)求△ABC周長(zhǎng)l的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.(1)求函數(shù)y=ax在點(diǎn)P(3,a3)處的導(dǎo)數(shù);
(2)求函數(shù)y=lnx在點(diǎn)P(5,ln5)處的導(dǎo)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知函數(shù)f(x)=$\frac{{4}^{x}}{{4}^{x}+2}$,解答下列問(wèn)題:
(1)求證:在函數(shù)的定義域內(nèi)任取x1,x2,當(dāng)x1+x2=1時(shí).都有f(x1)+f(x2)=1成立
(2)求f($\frac{1}{11}$)+f($\frac{2}{11}$)+f($\frac{3}{11}$)+…+f($\frac{10}{11}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.若函數(shù)f(x)=sinωxcosωx在區(qū)間[-$\frac{π}{6}$,$\frac{π}{6}$]上是減函數(shù),則ω的取值范圍是[-$\frac{3}{2}$,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知函數(shù)f(x)=$\left\{\begin{array}{l}{|lgx|,0<x≤10}\\{-\frac{x}{2}+6,x>10}\end{array}\right.$,若函數(shù)y=f2(x)-2bf(x)+b-$\frac{2}{9}$有6個(gè)零點(diǎn),則b的取值范圍是( 。
A.($\frac{2}{9}$,$\frac{1}{3}$)∪($\frac{2}{3}$,$\frac{7}{9}$)B.(-∞,$\frac{1}{3}$)∪($\frac{2}{3}$,+∞)C.(0,$\frac{1}{3}$)∪($\frac{2}{3}$,1)D.($\frac{2}{9}$,$\frac{7}{9}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.有紅、黃、藍(lán)旗各3面,每次升1面、2面、3面在某一旗桿上縱向排列,共可以組成( 。┓N不同的信號(hào).
A.27B.30C.36D.39

查看答案和解析>>

同步練習(xí)冊(cè)答案