如圖,某自來水公司要在公路兩側鋪設水管,公路為東西方向,在路北側沿直線鋪設線路l1,在路南側沿直線鋪設線路l2,現(xiàn)要在矩形區(qū)域ABCD內沿直線將l1與l2接通.已知AB = 60m,BC = 80m,公路兩側鋪設水管的費用為每米1萬元,穿過公路的EF部分鋪設水管的費用為每米2萬元,設∠EFB= α,矩形區(qū)域內的鋪設水管的總費用為W.

(1)求W關于α的函數(shù)關系式;
(2)求W的最小值及相應的角α.

(1)=80+ 60tanα;(2),.

解析試題分析:(1)過E作,垂足為M,由題意得∠MEF="α," 故有,,化簡即可;(2),利用導數(shù)求出的最大值和相應的角度即可.
試題解析:(1)如圖,過E作,垂足為M,由題意得∠MEF=α,
故有,,      3分
所以
=80+ 60tanα(其中      8分
(2)W

,
.        11分
,即,得
列表






+
0
 

單調遞增
極大值
單調遞減
所以當時有,此時有.         14分
答:鋪設水管的最小費用為萬元,相應的角.         16分
考點:函數(shù)模型的應用、利用導數(shù)求函數(shù)極值、三角函數(shù)綜合.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)是R上的奇函數(shù),當取得極值.
(I)求的單調區(qū)間和極大值
(II)證明對任意不等式恒成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)f(x)=-(a+2)x+lnx.
(1)當a=1時,求曲線y=f(x)在點(1,f (1))處的切線方程;
(2)當a>0時,若f(x)在區(qū)間[1,e)上的最小值為-2,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知,.
(Ⅰ)求證:
(Ⅱ)設直線、均相切,切點分別為()、(),且,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(Ⅰ) 求的單調區(qū)間;
(Ⅱ) 求所有的實數(shù),使得不等式恒成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設函數(shù).
(1)當,時,求函數(shù)的最大值;
(2)令,其圖象上存在一點,使此處切線的斜率,求實數(shù)的取值范圍;
(3)當,時,方程有唯一實數(shù)解,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

己知函數(shù) .
(I)若是,的極值點,討論的單調性;
(II)當時,證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(Ⅰ)設(其中的導函數(shù)),求的最大值;
(Ⅱ)求證:當時,有;
(Ⅲ)設,當時,不等式恒成立,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,已知點,函數(shù)的圖象上的動點軸上的射影為,且點在點的左側.設,的面積為.

(Ⅰ)求函數(shù)的解析式及的取值范圍;
(Ⅱ)求函數(shù)的最大值.

查看答案和解析>>

同步練習冊答案