設(shè)函數(shù)f(x)滿足f(x)=1+f(2)•log2x2,則f(4)=( 。
A、-3B、-2C、0D、1
考點(diǎn):函數(shù)的值
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由已知得f(2)=1+f(2)•2,解得f(2)=-1,從而f(4)=1+f(2)log216=1-4=-3.
解答: 解:函數(shù)f(x)滿足f(x)=1+f(2)•log2x2
∴f(2)=1+f(2)•2,解得f(2)=-1,
∴f(4)=1+f(2)log216
=1-4=-3.
故選:A.
點(diǎn)評(píng):本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時(shí)要注意函數(shù)性質(zhì)的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

sin
11π
6
的值為( 。
A、-
2
2
B、-
1
2
C、
1
2
D、
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

為改善環(huán)境,某城市對(duì)污水處理系統(tǒng)進(jìn)行改造.三年后,城市污水排放量由原來(lái)每年排放125萬(wàn)噸降到27萬(wàn)噸,那么污水排放量平均每年降低的百分率是(  )
A、50%B、40%
C、30%D、20%

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

有n個(gè)首項(xiàng)都是1的等差數(shù)列,設(shè)第m個(gè)數(shù)列的第k項(xiàng)為amk(m,k=1,2,3,…,n,n≥3),公差為dm,并且a1n,a2n,a3n,…,ann成等差數(shù)列.若dm=p1d1+p2d2(3≤m≤n,p1,p2是m的多項(xiàng)式),則p1+p2=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求下列函數(shù)的導(dǎo)數(shù)
(1)y=(3x2-4x)(2x+1)
(2)y=x2cosx
(3)y=exlnx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在如圖所示的直角坐標(biāo)系中,點(diǎn)A為圓O:x2+y2=1與x軸的交點(diǎn),垂直于x軸的動(dòng)直線l從點(diǎn)A出發(fā),以1m/s的速度沿x軸向左移動(dòng),記直線l與圓O的交點(diǎn)為M,N,劣弧MN的長(zhǎng)為x,令y=cosx,則y與時(shí)間t(0<t<1,單位:s)的函數(shù)y=f(x)的圖象大致為( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

命題p:“a=-2”是命題q:“直線ax+3y-1=0與直線6x+4y-3=0垂直”成立的( 。
A、充要條件
B、充分非必要條件
C、必要非充分條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知不等式組
x>0
y>0
4x+3y≤12

(1)畫(huà)出不等式組表示的平面區(qū)域;
(2)求不等式所表示的平面區(qū)域的面積
(3)求不等式所表示的平面區(qū)域的整點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

不等式|x-2|≤m的解集為{x|-4≤x≤8},又已知a,b,c∈R,且a+2b+3c=m,求a2+4b2+9c2的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案