若橢圓
x2
a2
+
y2
b2
=1
(a>b>0)的左、右焦點分別為F1、F2,橢圓上一點P,若|PF2|-|PF1|的最大值為2,且當(dāng)P,F(xiàn)1,F(xiàn)2能構(gòu)成三角形時,其周長為6,則橢圓方程為( 。
A、
x2
4
+
y2
3
=1
B、
x2
6
+
y2
4
=1
C、
x2
9
+
y2
6
=1
D、
x2
4
+y2=1
考點:橢圓的標(biāo)準(zhǔn)方程
專題:圓錐曲線的定義、性質(zhì)與方程
分析:由已知得
2c=2
2a+2c=6
a2=b2+c2
,由此能求出橢圓方程.
解答: 解:由已知得
2c=2
2a+2c=6
a2=b2+c2
,
解得a=2,b=
3
,
∴橢圓方程為
x2
4
+
y2
3
=1

故選:A.
點評:本題考查橢圓方程的求法,是基礎(chǔ)題,解題時要注意橢圓性質(zhì)的合理運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A、B、C的對邊分別是a,b,c,已知
cosA-2cosC
cosB
=
2c-a
b
,且sinA=
3
4
,角C為銳角.
(1)求角C的大小;
(2)若c=
7
,且△ABC的面積為
3
3
2
,求a2+b2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

當(dāng)x∈[a,b]時,函數(shù)f(x)=|x+1|+|3-x|的最大值為10,最小值4,則b-a的范圍是(  )
A、[2,8]
B、[3,7]
C、[3,10]
D、[2,10]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列有關(guān)命題的敘述錯誤的是( 。
A、對于命題P:?x∈R,x2+x-1<0,則¬P為:?x∈R,x2+x-1≥0
B、若“P且Q”為假命題,則P,Q均為假命題
C、“x>2”是“x2-3x+2>0”的充分不必要條件
D、命題“若x2-3x+2=0,則x=1”的逆否命題為“若x≠1,則x2-3x+2≠0”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

隨機(jī)擲一枚質(zhì)地均勻的硬幣三次,至少有一次正面朝上的概率為(  )
A、
1
8
B、
3
8
C、
5
8
D、
7
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b,c是三角形ABC的三條邊,且a2+c2-b2=ac,求:
(1)∠B的大;
(2)若c=3a,求tanA的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,為測量山高M(jìn)N,選擇A和另一座的山頂C為測量觀測點,從A點測得M點的仰角∠AMN=60°,C點的仰角∠CAB=45°以及∠MAC=75°;從C點測得∠MCA=60°,已知山高BC=1000m,則山高M(jìn)N=
 
 m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某賽季,甲、乙兩名籃球運動員都參加了11場比賽,他們每場得分的情況如圖所示的莖葉圖表示,則甲、乙兩名運動員得分的中位數(shù)分別為( 。
A、13、19
B、19、13
C、18、20
D、20、18

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

2lg5•2lg2+eln3=
 

查看答案和解析>>

同步練習(xí)冊答案