7.將4個顏色互不相同的球全部放入編號為1和2的兩個盒子里,使得放入每個盒子里的球的個數(shù)不小于該盒子的編號,則不同的放球方法有10種(用數(shù)字作答).

分析 根據(jù)題意,可得1號盒子至少放一個,最多放2個小球,即分兩種情況討論,分別求出其不同的放球方法數(shù)目,相加可得答案.

解答 解:根據(jù)題意,每個盒子里的球的個數(shù)不小于該盒子的編號,
分析可得,可得1號盒子至少放一個,最多放2個小球,分情況討論:
①1號盒子中放1個球,其余3個放入2號盒子,有C41=4種方法;
②1號盒子中放2個球,其余2個放入2號盒子,有C42=6種方法;
則不同的放球方法有10種,
故答案為:10.

點評 本題考查組合數(shù)的運用,注意挖掘題目中的隱含條件,全面考慮.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.銳角三角形△ABC滿足b2-a2=ac,則$\frac{1}{tanA}-\frac{1}{tanB}$的取值范圍為$(1,\frac{{2\sqrt{3}}}{3})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知圓E的極坐標(biāo)方程為ρ=4sinθ,以極點為原點,極軸為x軸的正半軸建立平面直角坐標(biāo)系,取相同單位長度(其中(ρ,θ),ρ≥0,θ∈[0,2π))).
(1)直線l過原點,且它的傾斜角α=$\frac{3π}{4}$,求l與圓E的交點A的極坐標(biāo)(點A不是坐標(biāo)原點);
(2)直線m過線段OA中點M,且直線m交圓E于B、C兩點,求||MB|-|MC||的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知f(x)是定義在R上的奇函數(shù),且f(x+2)=-f(x)恒成立,當(dāng)x∈(0,2]時,f(x)=2x+log2x,則f(2015)=(  )
A.-2B.$\frac{1}{2}$C.2D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知a,b是函數(shù)f(x)=x2-mx+n(m>0,n>0)的兩個不同的零點,且a,b,-4這三個數(shù)可適當(dāng)排序后成等差數(shù)列,也可適當(dāng)排序后成等比數(shù)列,則m+n=26.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.在某項測量中,測量的結(jié)果ξ 服從正態(tài)分布N(a,δ 2)(a>0,δ>0),若ξ 在(0,a)內(nèi)取值的概率為0.3,則ξ 在(0,2a)內(nèi)取值的概率為( 。
A.0.8B.0.6C.0.4D.0.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知|$\overrightarrow a}$|=|${\overrightarrow b}$|=|${\overrightarrow c}$|=1,且$\overrightarrow a+\overrightarrow b+\overrightarrow c=\overrightarrow 0$,則$\overrightarrow a$與$\overrightarrow b$的夾角為$\frac{2π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.兩個平面互相垂直,下列說法中正確的是( 。
A.一個平面內(nèi)的任一條直線必垂直于另一個平面
B.分別在這兩個平面內(nèi)且互相垂直的兩直線,一定分別與另一平面垂直
C.過其中一個平面內(nèi)一點作與它們交線垂直的直線,必垂直于另一個平面
D.一個平面內(nèi)的已知直線必垂直于另一個平面內(nèi)的無數(shù)條直線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知全集U=R,集合A={x|(x-1)(x+3)≥0},集合B={x|($\frac{1}{3}$)x<9},則(∁UA)∪B=( 。
A.(-2,1)B.(-3,+∞)C.(-∞,-3)∪(-2,+∞)D.(1,+∞)

查看答案和解析>>

同步練習(xí)冊答案