分析 (1)f(x)=ax2-2x+1的對(duì)稱軸為x=$\frac{1}{a}$,由$\frac{1}{3}$≤a≤1,知1≤$\frac{1}{a}$≤3,結(jié)合函數(shù)的單調(diào)性判斷即可;
(2)由a的符號(hào)進(jìn)行分類討論,能求出M(a)-N(a)的解析式,從而求出其最小值即可.
解答 解:(1)f(x)=ax2-2x+1的對(duì)稱軸為x=$\frac{1}{a}$,
∵$\frac{1}{3}$≤a≤1,∴1≤$\frac{1}{a}$≤3,
∴f(x)在[1,$\frac{1}{a}$)遞減,在($\frac{1}{a}$,3]遞增,
∴f(x)在[1,3]上,所以$f{(x)_{min}}=f({\frac{1}{a}})=1-\frac{1}{a}$;
(2)∵f(x)=ax2-2x+1在區(qū)間[1,3]上的最大值為M(a),最小值為N(a),
∴①當(dāng)1≤$\frac{1}{a}$≤2,即$\frac{1}{2}$≤a≤1時(shí),
M(a)=f(3)=9a-5,N(a)=f($\frac{1}{a}$)=1-$\frac{1}{a}$.
∴M(a)-N(a)=9a+$\frac{1}{a}$-6.
②當(dāng)2<$\frac{1}{a}$≤3,即$\frac{1}{3}$≤a<$\frac{1}{2}$時(shí),
M(a)=f(1)=a-1,N(a)=f($\frac{1}{a}$)=1-$\frac{1}{a}$
∴M(a)-N(a)=a+$\frac{1}{a}$-2,
∴$M(a)-N(a)=\left\{{\begin{array}{l}{a+\frac{1}{a}-2,a∈[{\frac{1}{3},\frac{1}{2}}]}\\{9a+\frac{1}{a}-6,a∈({\frac{1}{2},1}]}\end{array}}\right.$,
當(dāng)$a∈[{\frac{1}{3},\frac{1}{2}}]$時(shí),最小值為$\frac{1}{2}$,
當(dāng)$a∈({\frac{1}{2},1}]$時(shí),最小值也是$\frac{1}{2}$,
綜上,M(a)-N(a)的最小值為$\frac{1}{2}$.
點(diǎn)評(píng) 本題考查函數(shù)的解析式的求法,解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意分類討論思想的合理運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充分必要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-2,2) | B. | (5,7) | C. | (3,5) | D. | (1,3) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ($\frac{1}{4}$,1) | B. | (1,4) | C. | (1,8) | D. | (8,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com