20.sin20°sin80°-cos160°sin10°=( 。
A.$-\frac{{\sqrt{3}}}{2}$B.$\frac{{\sqrt{3}}}{2}$C.$-\frac{1}{2}$D.$\frac{1}{2}$

分析 利用誘導公式化成同角,再用和差公式即可求解.

解答 解:∵sin80°=sin(90°-10°)=cos10°,
cos160°=cos(180°-20°)=-cos20°,
那么:sin20°sin80°-cos160°sin10°=sin20°cos10°+cos20°sin10°=sin(20°+10°)=sin30°=$\frac{1}{2}$
故選D

點評 本題考查兩角和與差的三角函數(shù)的應用,考查計算能力.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

10.設全集U=R,$A=\left\{{x|\frac{x-3}{x-1}>0}\right\}$,B={x|x<2},則(∁UA)∩B=( 。
A.{x|1≤x<2}B.{x|1<x<2}C.{x|x<2}D.{x|x≥1}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.口袋中裝有4個形狀大小完全相同的小球,小球的編號分別為1,2,3,4,甲、乙、丙依次有放回地隨機抽取1個小球,取到小球的編號分別為a,b,c.
(1)在一次抽取中,若有兩人抽取的編號相同,則稱這兩人為“好朋友”,求甲、乙兩人成為“好朋友”的概率;
(2)求抽取的編號能使方程a+b+2c=6成立的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知異面直線a與b所成角為60°,過空間內(nèi)一定點P且與直線a、b所成角均為60°的直線有( 。l.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知橢圓方程2x2+3y2=1,則它的長軸長是( 。
A.$\sqrt{2}$B.1C.$\frac{1}{2}$D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知正方形ABCD的面積為2,點P在邊AB上,則$\overrightarrow{PD}•\overrightarrow{PC}$的最小值為( 。
A.$\frac{{\sqrt{6}}}{2}$B.$\frac{3}{2}$C.2D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知集合A={x||x|≤2},B={x|x2-2x-3≤0},則A∩B=( 。
A.[-1,2]B.[-2,3]C.[-2,1]D.[1,2]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.如圖,在三棱柱ABC-A1B1C1中,側(cè)面ABB1A1,ACC1A1均為正方形,∠BAC=90°,點D是棱B1C1的中點.請建立適當?shù)淖鴺讼,求解下列問題:
(Ⅰ)求證:異面直線A1D與BC互相垂直;
(Ⅱ)求二面角(鈍角)D-A1C-A的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知A(2,5,-6),點P在y軸上,|PA|=7,則點P的坐標是( 。
A.(0,8,0)B.(0,2,0)C.(0,8,0)或(0,2,0)D.(0,-8,0)

查看答案和解析>>

同步練習冊答案