曲線y=
x
x+a
(a≠0)與y=2x+1在x=b處相切,則a+b=( 。
A、1B、-1C、2D、-2
考點(diǎn):利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程
專(zhuān)題:計(jì)算題,導(dǎo)數(shù)的概念及應(yīng)用
分析:求出導(dǎo)數(shù),求出切線的斜率,由已知切線的方程可得a,b方程,解得即可得到a+b的值.
解答: 解:y=
x
x+a
的導(dǎo)數(shù)為y′=
a
(x+a)2
,
即有在x=b處相切的切線斜率為
a
(a+b)2
=2,
又2b+1=
b
b+a
,
解得a=2,b=-1.
即有a+b=1.
故選A.
點(diǎn)評(píng):本題考查導(dǎo)數(shù)的幾何意義:函數(shù)在某點(diǎn)處的導(dǎo)數(shù)即為曲線在該點(diǎn)處切線的斜率,求出導(dǎo)數(shù)是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)是定義在R上的周期為4的奇函數(shù),且f(1)=2,則f(-5)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知(1+i)m2+(7-5i)m+10-14i=0,則實(shí)數(shù)m=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

計(jì)算:3sin
π
2
+2cos0-4tanπ+2sin
2
+5cosπ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在復(fù)平面內(nèi),復(fù)數(shù)(1+i)z=2i(i為虛數(shù)單位)的共軛復(fù)數(shù)對(duì)應(yīng)的點(diǎn)位于(  )
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|lg(x-2)≥0},B={x|x≥2},全集U=R,則(∁UA)∩B=( 。
A、{x|-1<x≤3}
B、∅
C、{x|x=3}
D、{x|2≤x<3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

2i
1-i
2=(  )
A、2iB、4i
C、-4iD、-2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=4sinωx•cos(ωx+
π
3
)+
3
,(ω>0)的最小正周期是π,求函數(shù)f(x)在[-
π
4
,
π
6
]上的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=asinxcosx+bsin2x,x∈R,且f(
π
12
)=
3
-1,f(
π
6
)=1.
(Ⅰ)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)若f(
α
2
)=
3
5
,α∈(-π,
π
3
),求sinα的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案