【題目】已知數(shù)組,如果數(shù)組滿足,且,其中,則稱為的“兄弟數(shù)組”.
(1)寫出數(shù)組的“兄弟數(shù)組”;
(2)若的“兄弟數(shù)組”是,試證明:成等差數(shù)列;
(3)若為偶數(shù),且的“兄弟數(shù)組”是,求證:.
【答案】(1)(2)證明見解析(3)證明見解析
【解析】
(1)根據(jù)“兄弟數(shù)組”的定義直接求解即可得到結(jié)果;
(2)依次列舉出時的式子,將第②④⑥⑧⑩個等式的兩邊分別乘以,再與其他等式相加可整理得到,進而得到結(jié)論;
(3)依次列舉出時的式子,將上述個等式中的第個等式的兩邊分別乘以,再與其他等式相加整理可得結(jié)果.
(1)由知:,,,,,.
,,,
,,同理可得:,,,
.
(2)對于數(shù)組及其“兄弟數(shù)組”,
…①,…②,…③,…④,
……,…,
將上述幾個等式中的第②④⑥⑧⑩個等式的兩邊分別乘以,再與其他等式相加得:,
即,,
成等比數(shù)列.
(3),,,……,.
由于為偶數(shù),將上述個等式中的第這個等式的兩邊分別乘以,再與其他等式相加得:,
即,.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐中,平面ABCD,底面四邊形ABCD為等腰梯形,且,E,F分別為AB,PD的中點.
(1)求證:;
(2)求點C到平面DEF的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的兩個焦點坐標(biāo)分別是,并且經(jīng)過點.(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若斜率為的直線經(jīng)過點,且與橢圓交于不同的兩點,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某網(wǎng)店經(jīng)營各種兒童玩具,該網(wǎng)店老板發(fā)現(xiàn)該店經(jīng)銷的一種手腕可以搖動的款芭比娃娃玩具在某周內(nèi)所獲純利(元)與該周每天銷售這種芭比娃娃的個數(shù)(個)之間的關(guān)系如下表:
每天銷售芭比娃娃個數(shù)(個) | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
該周內(nèi)所獲純利(元) | 66 | 69 | 74 | 81 | 89 | 90 | 91 |
(1)由表中數(shù)據(jù)可推測線性相關(guān),求出回歸直線方程;
(2)請你預(yù)測當(dāng)該店每天銷售這種芭比娃娃20件時,每周獲純利多少?
參考公式:,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量 = (1,2sinθ),= (sin(θ+),1),θR。
(1) 若⊥,求 tanθ的值;
(2) 若∥,且 θ (0,),求 θ的值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平行四邊形中,,,過點作的垂線,交的延長線于點,.連結(jié),交于點,如圖1,將沿折起,使得點到達點的位置,如圖2.
(1)證明:平面平面;
(2)若為的中點,為的中點,且平面平面,求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖甲,在等腰梯形中,,,是的中點.將沿折起,使二面角為,連接,得到四棱錐(如圖乙),為的中點,是棱上一點.
(1)求證:當(dāng)為的中點時,平面平面;
(2)是否存在一點,使平面與平面所成的銳二面角為,若存在,求的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com