【題目】已知橢圓的兩個(gè)焦點(diǎn)坐標(biāo)分別是,并且經(jīng)過點(diǎn).(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)若斜率為的直線經(jīng)過點(diǎn),且與橢圓交于不同的兩點(diǎn),面積的最大值.

【答案】(1)(2)

【解析】

試題(1)由橢圓的兩個(gè)焦點(diǎn)坐標(biāo)分別是,即橢圓的焦半徑,并且經(jīng)過點(diǎn),所以根據(jù)橢圓的定義求得橢圓的長半軸,再根據(jù)即可求出橢圓的短半軸的值.從而得到橢圓的標(biāo)準(zhǔn)方程.

2)假設(shè)過點(diǎn)的直線,聯(lián)立方程,韋達(dá)定理以及弦長公式表示出弦長.再用點(diǎn)到直線的距離,即可得到高.再通過換元求得最值.

試題解析:(1)設(shè)橢圓的標(biāo)準(zhǔn)方程為,有橢圓的定義可得

故橢圓的標(biāo)準(zhǔn)方程為

2)設(shè)直線的方程為,

,依題意,

設(shè),

,

,

由點(diǎn)到直線的距離公式得,

設(shè)

,

當(dāng)且僅當(dāng)時(shí),上式取等號(hào),

所以,面積的最大值為1

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在梯形ABCD中,,,為梯形外一點(diǎn),且平面.

1)求證:平面;

2)當(dāng)二面角的平面角的余弦值為時(shí),求這個(gè)四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的前項(xiàng)和為,且,數(shù)列滿足,且.

1)求數(shù)列,的通項(xiàng)公式;

2)若,數(shù)列的前項(xiàng)和為,若不等式對(duì)一切恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),若對(duì)于區(qū)間上的任意,都有,則實(shí)數(shù)的最小值是(  )

A. 20B. 18

C. 3D. 0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列滿足:,且為正項(xiàng)等比數(shù)列,,.

(1)求數(shù)列的通項(xiàng)公式;

(2)若數(shù)列滿足,為數(shù)列的前項(xiàng)和,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱中,,且,點(diǎn)M、N分別為棱BC的中點(diǎn).

1)證明:證明//平面;

2)求點(diǎn)M到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)討論函數(shù)的單調(diào)性;

2)當(dāng)函數(shù)僅有極小值時(shí),不等實(shí)數(shù)滿足.證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)組,如果數(shù)組滿足,且,其中,則稱兄弟數(shù)組”.

1)寫出數(shù)組兄弟數(shù)組;

2)若兄弟數(shù)組,試證明:成等差數(shù)列;

3)若為偶數(shù),且兄弟數(shù)組,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中,角A,B,C的對(duì)邊分別是且滿足

(1)求角B的大小;

(2)若的面積為為,求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案