11.某幾何體的三視圖如圖所示,則該幾何體的體積為(  )
A.$\frac{10}{3}$B.$\frac{8}{3}$C.4D.3

分析 兩條三視圖判斷幾何體的形狀,畫出圖形,利用三視圖的數(shù)據(jù),求解幾何體的體積即可.

解答 解:由三視圖知,幾何體的形狀如圖,底面是邊長為2的正方形,PA垂直底面,PA=2,ED垂直底面,DE=1,
幾何體的體積為:VP-ABCD+VP-CDE=$\frac{1}{3}×2×2×2$+$\frac{1}{3}×\frac{1}{2}×2×1×2$=$\frac{10}{3}$.
故選:A.

點評 本題考查由三視圖求幾何體的體積,在三個圖形中,俯視圖確定錐體的名稱,即是幾棱錐,正視圖和側(cè)視圖確定錐體的高,注意高的大小,容易出錯.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.某工廠為了對新研發(fā)的產(chǎn)品進(jìn)行合理定價,將該產(chǎn)品按事先擬定的價格進(jìn)行試銷,得到一組檢測數(shù)據(jù)(x1,y1)(i=1,2,…6)如表所示:
試銷價格x(元)4567a9
產(chǎn)品銷量y(件)b8483807568
已知變量x,y具有線性負(fù)相關(guān)關(guān)系,且$\sum_{i=1}^{6}$xi=39,$\sum_{i=1}^{6}$yi=480,現(xiàn)有甲、乙、丙三位同學(xué)通過計算求得其歸直線方程分別為:甲y=4x+54;乙y=-4x+106;丙y=-4.2x+105,其中有且僅有一位同學(xué)的計算結(jié)果是正確的.
(1)試判斷誰的計算結(jié)果正確?并求出a,b的值;
(2)若由線性回歸方程得到的估計數(shù)據(jù)與檢測數(shù)據(jù)的誤差不超過1,則該檢測數(shù)據(jù)是“理想數(shù)據(jù)“,現(xiàn)從檢測數(shù)據(jù)中隨機(jī)抽取3個,求“理想數(shù)據(jù)“的個數(shù)ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.若不等式x2-ax+1≥0對一切x∈(0,1]恒成立,則a的取值范圍是(-∞,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.計算:-2-2-$\sqrt{(-3)^{2}}$+(π-3.14)0+$\sqrt{\frac{1}{8}}$sin45°=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知曲線C:x2+y2-2x-4y+m=0和直線1:x+2y-4=0;
(1)當(dāng)曲線C表示圓時,求m的取值范圍;
(2)當(dāng)曲線C表示圓時,被直線1截得的弦長為2$\sqrt{5}$.求m的值
(3)是否存在實數(shù)m,使得曲線C與直線1相交于M,N兩點.且滿足0M⊥ON(其中O為坐標(biāo)原點).若存在.求m的值:若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.在正三棱柱(底面是正三角形的直棱柱)ABC-A1B1C1中,AB=AA1=2.若點M在△ABC所在平面上運動,且使得△AC1M的面積為1,則動點M的軌跡為( 。
A.B.橢圓C.雙曲線D.拋物線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.己知兩點A(-3,0)、B(3,0),動點M滿足直線AM、BM的斜率之積為-$\frac{4}{9}$.動點M的軌跡為曲線C.
(1)求曲線C的方程;
(2)若∠AMB為鈍角,求點M的橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.一個高為3的直三棱柱的俯視圖是腰長為2的等腰直角三角形,如圖所示,則此直三棱柱的俯視圖為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=$\frac{1}{x}$(x>0),對于正數(shù)x1,x2,…,xn(n∈N+),記Sn=x1+x2+…+xn,如圖,由點(0,0),(xi,0),(xi,f(xi)),(0,f(xi))構(gòu)成的矩形的周長為Ci(i=1,2,…,n),都滿足Ci=4Si(i=1,2,…,n).
(Ⅰ)求x1;
(Ⅱ)猜想xn的表達(dá)式(用n表示),并用數(shù)學(xué)歸納法證明.

查看答案和解析>>

同步練習(xí)冊答案