已知向量=(sinB,1-cosB),且與向量=(2,0)所成角為,其中A、B、C是△ABC的內(nèi)角。
(1)求角B的大;
(2)求sinA+sinC的取值范圍。

(1)B=,(2)

解析試題分析:(1)由題知, ×=(sinB,1-cosB)×(2,0)=2sinB,           (2分)
由數(shù)量積定義知, ×ô×ôôcos=×2×=  4分)
∴4sin2B=2-2cosB,2cos2B-cosB-1=0,∴cosB=-,B=,cosB=1(舍去) (6分)
(2)由(1)可得:

考點(diǎn):本題考查了數(shù)量積的運(yùn)算及三角函數(shù)的性質(zhì)
點(diǎn)評(píng):此類問(wèn)題比較綜合,除了要求學(xué)生掌握數(shù)量積的坐標(biāo)運(yùn)算,還需掌握三角恒等變換公式及三角函數(shù)的性質(zhì)、值域等知識(shí)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知是同一平面內(nèi)的三個(gè)向量,其中
(1)若,且,求:的坐標(biāo)
(2)若,且垂直,求的夾角

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知
(Ⅰ)若平行,求實(shí)數(shù)的值.
(Ⅱ)若的夾角為鈍角,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),給定兩點(diǎn)A(1,0),B(0,一2),點(diǎn)C滿足,其中,且
(1)求點(diǎn)C的軌跡方程;
(2)設(shè)點(diǎn)C的軌跡與橢圓交于兩點(diǎn)M,N,且以MN為直徑的圓過(guò)原點(diǎn),求證:為定值;
(3)在(2)的條件下,若橢圓的離心率不大于,求橢圓長(zhǎng)軸長(zhǎng)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知=,= ,=,設(shè)是直線上一點(diǎn),是坐標(biāo)原點(diǎn)
(1)求使取最小值時(shí)的;
(2)對(duì)(1)中的點(diǎn),求的余弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)為兩個(gè)不共線向量。
(1)試確定實(shí)數(shù)k,使k+k共線;
(2),求使三個(gè)向量的終點(diǎn)在同一條直線上的的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)
向量
(1)若a為任意實(shí)數(shù),求g(x)的最小正周期;
(2)若g(x)在[o,)上的最大值與最小值之和為7,求a的值,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

設(shè)向量,若),則的最小值為(   )

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案