12.已知函數(shù)f(x)=sin2x+$\sqrt{3}$sinxcosx+$\frac{3}{2}$,x∈R.
(I)求函數(shù)f(x)的最小正周期T及在[-π,π]上的單調(diào)遞減區(qū)間.
(II)在△ABC中,邊a,b,c的對(duì)角分別為A,B,C,已知A為銳角,a=3$\sqrt{3}$,c=6,且f(A)是函數(shù)f(x)在[0,$\frac{π}{2}}$]上的最大值,求△ABC面積.

分析 (I)利用倍角公式、和差公式可得:f(x)=$sin(2x-\frac{π}{6})$+2,可得T=$\frac{2π}{2}$=π.由2kπ+$\frac{π}{2}$≤$2x-\frac{π}{6}$≤2kπ+$\frac{3π}{2}$,基礎(chǔ)即可得出單調(diào)區(qū)間.
(II)x∈[0,$\frac{π}{2}}$],可得$(2x-\frac{π}{6})$∈$[-\frac{π}{6},\frac{5π}{6}]$.$-\frac{1}{2}≤$$sin(2x-\frac{π}{6})$≤1,因此f(x)max=3,此時(shí)2x-$\frac{π}{6}$=$\frac{π}{2}$,由f(A)是函數(shù)f(x)在[0,$\frac{π}{2}}$]上的最大值,A為銳角,可得A.由余弦定理與三角形面積計(jì)算公式即可得出.

解答 解:(I)f(x)=sin2x+$\sqrt{3}$sinxcosx+$\frac{3}{2}$=$\frac{1-cos2x}{2}$+$\frac{\sqrt{3}}{2}sin2x$+$\frac{3}{2}$=$sin(2x-\frac{π}{6})$+2,
∴T=$\frac{2π}{2}$=π.
由2kπ+$\frac{π}{2}$≤$2x-\frac{π}{6}$≤2kπ+$\frac{3π}{2}$,解得$kπ+\frac{π}{3}$≤x≤$\frac{5π}{6}+kπ$,(k∈Z).
當(dāng)k=0時(shí),x∈$[\frac{π}{3},\frac{5π}{6}]$⊆[-π,π].當(dāng)k=-1時(shí),x∈$[-\frac{2π}{3},-\frac{π}{6}]$⊆[-π,π].
∴函數(shù)f(x)[-π,π]上的單調(diào)遞減區(qū)間是$[\frac{π}{3},\frac{5π}{6}]$,$[-\frac{2π}{3},-\frac{π}{6}]$.
(II)x∈[0,$\frac{π}{2}}$],∴$(2x-\frac{π}{6})$∈$[-\frac{π}{6},\frac{5π}{6}]$.∴$-\frac{1}{2}≤$$sin(2x-\frac{π}{6})$≤1,∴f(x)max=3,此時(shí)2x-$\frac{π}{6}$=$\frac{π}{2}$,
∵f(A)是函數(shù)f(x)在[0,$\frac{π}{2}}$]上的最大值,A為銳角,∴2A-$\frac{π}{6}$=$\frac{π}{2}$,解得A=$\frac{π}{3}$.
由余弦定理可得:a2=b2+c2-2bccos$\frac{π}{3}$,可得b2-6b+9=0,解得b=3.
∴S△ABC=$\frac{1}{2}bc$sinA=$\frac{1}{2}×3×6×\frac{\sqrt{3}}{2}$=$\frac{9\sqrt{3}}{2}$.

點(diǎn)評(píng) 本題考查了三角函數(shù)的圖象與性質(zhì)、余弦定理的應(yīng)用、和差公式、倍角公式、三角形面積計(jì)算公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.給出下列命題:
(1)若0<x<$\frac{π}{2}$,則sinx<x<tanx.
(2)若-$\frac{π}{2}$<x<0,則sinx<x<tanx.
(3)設(shè)A,B,C是△ABC的三個(gè)內(nèi)角,若A>B>C,則sinA>sinB>sinC.
(4)設(shè)A,B是鈍角△ABC的兩個(gè)銳角,則sinA>cosB.
其中,正確命題的個(gè)數(shù)為( 。
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知Sn為正項(xiàng)數(shù)列{an}的前n項(xiàng)和,且滿足an=2$\sqrt{{S}_{n}}$-1,n∈N*
(1)求{an}的通項(xiàng)公式;
(2)令bn=2${\;}^{{a}_{n}+1}$•an,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.給定平面向量(1,1),那么,平面向量($\frac{1-\sqrt{3}}{2}$,$\frac{1+\sqrt{3}}{2}$)是將向量(1,1)經(jīng)過( 。┳儞Q得到的.
A.順時(shí)針旋轉(zhuǎn)60°所得B.順時(shí)針旋轉(zhuǎn)120°所得
C.逆時(shí)針旋轉(zhuǎn)60°所得D.逆時(shí)針旋轉(zhuǎn)120°所得

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.?dāng)?shù)列{an}滿足a1=1,$\frac{{{a_{n+1}}}}{a_n}$=2,數(shù)列{bn}滿足b1=1,bn+1-bn=$\frac{1}{{{a_{n+1}}}}$,(以上n∈N*),則{bn}的通項(xiàng)公式是2-$\frac{1}{{2}^{n-1}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.證明:如果x,y,z,$\sqrt{x}$+$\sqrt{y}$+$\sqrt{z}$∈Q,則$\sqrt{x}$,$\sqrt{y}$,$\sqrt{z}$∈Q.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知直線y=ax+1平分圓x2+y2-2x+4y=0,則a=-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.等邊三角形ABC的邊長(zhǎng)為1,$\overrightarrow{AB}$=$\vec a$,$\overrightarrow{CB}$=$\overrightarrow b$,$\overrightarrow{CA}$=$\vec c$,那么$\vec a$•$\vec b$+$\vec c$•$\vec b$+$\vec a$•$\vec c$=(  )
A.$-\frac{1}{2}$B.$\frac{1}{2}$C.$-\frac{3}{2}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知a=${∫}_{-1}^{1}$5x${\;}^{\frac{2}{3}}$dx,則二項(xiàng)式($\sqrt{t}$-$\frac{a}{6t}$)a展開式中的常數(shù)項(xiàng)是15.(填數(shù)值)

查看答案和解析>>

同步練習(xí)冊(cè)答案