20.給定平面向量(1,1),那么,平面向量($\frac{1-\sqrt{3}}{2}$,$\frac{1+\sqrt{3}}{2}$)是將向量(1,1)經(jīng)過( 。┳儞Q得到的.
A.順時針旋轉(zhuǎn)60°所得B.順時針旋轉(zhuǎn)120°所得
C.逆時針旋轉(zhuǎn)60°所得D.逆時針旋轉(zhuǎn)120°所得

分析 向量表示已知向量,利用向量旋轉(zhuǎn)公式求解即可.

解答 解:平面向量(1,1)=$\sqrt{2}$(cos45°,sin45°).
令平面向量($\frac{1-\sqrt{3}}{2}$,$\frac{1+\sqrt{3}}{2}$)=$\sqrt{2}$(cosθ,sinθ).
可得cosθ=$\frac{\sqrt{2}-\sqrt{6}}{4}$,sinθ=$\frac{\sqrt{2}+\sqrt{6}}{4}$,
θ=105°.
105°-45°=60°.
平面向量($\frac{1-\sqrt{3}}{2}$,$\frac{1+\sqrt{3}}{2}$)是將向量(1,1)經(jīng)過逆時針旋轉(zhuǎn)60°所得變換得到的.
故選:C.

點評 本題考查向量的坐標(biāo)運算,向量的旋轉(zhuǎn)變換,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.下列說法中,正確的有( 。
①用反證法證明命題“a,b∈R,方程x3+ax+b=0至少有一個實根”時,要作的假設(shè)是“方程至多有兩個實根”;
②用數(shù)學(xué)歸納法證明“1+2+22+…+2n+2=2n+3-1,在驗證n=1時,左邊的式子是1+2+22;
③用數(shù)學(xué)歸納法證明$\frac{1}{n+1}$+$\frac{1}{n+2}$+…+$\frac{1}{n+n}$>$\frac{13}{24}$(n∈N*)的過程中,由n=k推導(dǎo)到n=k+1時,左邊增加的項為$\frac{1}{2n+1}$+$\frac{1}{2n+2}$,沒有減少的項;
④演繹推理的結(jié)論一定正確;
⑤要證明“$\sqrt{7}$-$\sqrt{3}$>$\sqrt{6}$-$\sqrt{2}$”的最合理的方法是分析法.
A.①④B.C.②③⑤D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π) 的部分圖象如圖所示,
(Ⅰ)求函數(shù)的解析式;
(Ⅱ)求函數(shù)的對稱軸方程和對稱中心坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.求下列直線和橢圓的交點坐標(biāo):
(1)3x+10y-25=0,$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{4}$=1=;
(2)3x-y+2=0,$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{4}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.下列命題中正確的是( 。
A.命題“?x∈R使得x2+x+1<0”的否定是“?x∈R均有x2+x+1<0”
B.若p為真命題,q為假命題,則(¬p)∨q為真命題
C.為了了解高考前高三學(xué)生每天的學(xué)習(xí)時間,現(xiàn)要用系統(tǒng)抽樣的方法從某班50個學(xué)生中抽取一個容量為10的樣本,已知50個學(xué)生的編號為1,2,3…50,若8號被選出,則18號也會被選出
D.已知m、n是兩條不同直線,α、β是兩個不同平面,α∩β=m,則“n?α,n⊥m”是“α⊥β”的充分條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知雙曲線方程為$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0),A(0,b),C(0,-b),B是雙曲線的左頂點,F(xiàn)是雙曲線的左焦點,直線AB與FC相交于D,若雙曲線離心率為2,則∠BDF的余弦值為(  )
A.$\frac{{\sqrt{7}}}{7}$B.$\frac{{2\sqrt{7}}}{7}$C.$\frac{{\sqrt{7}}}{14}$D.$\frac{{5\sqrt{7}}}{14}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=sin2x+$\sqrt{3}$sinxcosx+$\frac{3}{2}$,x∈R.
(I)求函數(shù)f(x)的最小正周期T及在[-π,π]上的單調(diào)遞減區(qū)間.
(II)在△ABC中,邊a,b,c的對角分別為A,B,C,已知A為銳角,a=3$\sqrt{3}$,c=6,且f(A)是函數(shù)f(x)在[0,$\frac{π}{2}}$]上的最大值,求△ABC面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.函數(shù)y=sin2(x+$\frac{π}{4}$)的圖象沿x軸向右平移a個單位(a>0),所得圖象關(guān)于y軸對稱,當(dāng)a的值最小值時,函數(shù)f(x)=2cos(x+a)-m在[0,π]內(nèi)有兩個不同的零點,則實數(shù)m的取值范圍是( 。
A.[-2,$\sqrt{2}$]B.[-$\sqrt{2}$,2]C.[-2,-$\sqrt{2}$]D.(-2,-$\sqrt{2}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.下列命題:
(1)若一條直線與兩個平行平面中的一個平行,那么它也與另一個平面平行;
(2)若平面α內(nèi)有不共線的三點到平面β的距離相等,則α∥β;
(3)過平面α外一點和平面α內(nèi)一點與平面α垂直的平面只有一個;
(4)若平面α⊥平面β,α∩β=b,直線a?α,α⊥β,則a∥α.
其中正確的有( 。﹤.
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊答案