已知兩點(diǎn)分別為A(4,3)和B(7,-1),則這兩點(diǎn)之間的距離為( 。
分析:利用兩點(diǎn)之間的距離,即可得出結(jié)論.
解答:解:∵A(4,3)和B(7,-1),
∴AB=
(4-7)2+(3+1)2
=5
故選D.
點(diǎn)評(píng):本題考查兩點(diǎn)之間的距離,考查學(xué)生的計(jì)算能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(考生注意:請(qǐng)?jiān)谙铝腥}中任選一題作答,如果多做,則按所做的第一題評(píng)閱記分)
A.(不等式選做題)不等式|
x+1
x-1
|≥1
的解集是
(-∞,0]
(-∞,0]

B.(幾何證明選做題) 如圖,以AB=4為直徑的圓與△ABC的兩邊分別交于E,F(xiàn)兩點(diǎn),∠ACB=60°,則EF=
2
2

C.(坐標(biāo)系與參數(shù)方程選做題) 在極坐標(biāo)中,已知點(diǎn)P為方程ρ(cosθ+sinθ)=1所表示的曲線上一動(dòng)點(diǎn),Q(2,
π
3
),則|PQ|的最小值為
6
2
6
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的左頂點(diǎn),右焦點(diǎn)分別為A、F,右準(zhǔn)線為m.圓D:x2+y2+x-3y-2=0.
(1)若圓D過(guò)A、F兩點(diǎn),求橢圓C的方程;
(2)若直線m上不存在點(diǎn)Q,使△AFQ為等腰三角形,求橢圓離心率的取值范圍.
(3)在(1)的條件下,若直線m與x軸的交點(diǎn)為K,將直線l繞K順時(shí)針旋轉(zhuǎn)
π
4
得直線l,動(dòng)點(diǎn)P在直線l上,過(guò)P作圓D的兩條切線,切點(diǎn)分別為M、N,求弦長(zhǎng)MN的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:山東省模擬題 題型:解答題

如圖,已知橢圓分別為其左右焦點(diǎn),A為左頂點(diǎn),直線l的方程為x=4,過(guò)F2的直線l′與橢圓交于異于A的P、Q兩點(diǎn).
(Ⅰ)求的取值范圍;
(Ⅱ)若求證:M、N兩點(diǎn)的縱坐標(biāo)之積為定值;并求出該定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知兩點(diǎn)分別為A(4,3)和B(7,-1),則這兩點(diǎn)之間的距離為(  )
A.1B.2C.3D.5

查看答案和解析>>

同步練習(xí)冊(cè)答案