4.(1)計(jì)算:7$\root{3}{3}$-3$\root{3}{24}$-6$\root{3}{\frac{1}{9}}$+$\root{4}{3\root{3}{3}}$+${(\frac{1}{4})}^{\frac{-1}{2}}$.
(2)已知1oga2=m,1oga3=n.求a2m+n的值.

分析 (1)利用根式的運(yùn)算法則化簡(jiǎn)求解即可.
(2)利用已知條件,代入所求的表達(dá)式,利用對(duì)數(shù)運(yùn)算法則化簡(jiǎn)求解即可.

解答 解:(1)7$\root{3}{3}$-3$\root{3}{24}$-6$\root{3}{\frac{1}{9}}$+$\root{4}{3\root{3}{3}}$+${(\frac{1}{4})}^{\frac{-1}{2}}$
=7$\root{3}{3}$-6$\root{3}{3}$-2$\root{3}{3}$+$\root{3}{3}$+2
=2.
(2)已知1oga2=m,1oga3=n.
a2m+n=${a}^{lo{g}_{a}4+lo{g}_{a}3}$=${a}^{lo{g}_{a}12}$
=12.

點(diǎn)評(píng) 本題考查對(duì)數(shù)運(yùn)算法則以及根式的運(yùn)算法則的應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.求值:已知$f(α)=\frac{{sin(π-α)cos(-α)cos(-α+\frac{3π}{2})}}{{cos(\frac{π}{2}-α)sin(-π-α)}}$
(1)化簡(jiǎn)f(α)
(2)若α是第二象限角,且$cos(α-\frac{5π}{2})=\frac{1}{5}$,求f(α)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.設(shè)P(x1,y1)、Q(x2,y2)分別為曲線y=2$\sqrt{x}$上不同的兩點(diǎn),F(xiàn)(1,0),x2=2x1+1,則$\frac{|QF|}{|PF|}$等于(  )
A.1B.2C.2$\sqrt{2}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.設(shè)a為實(shí)數(shù),則下列不等式一定不成立的是( 。
A.2a>4aB.2lga<lgaC.a2+|a|≤0D.|a+$\frac{1}{a}}$|<2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.我國(guó)古代數(shù)學(xué)名著《九章算術(shù)》中有一問(wèn)題“今有垣厚五尺,兩鼠對(duì)穿,初日各一尺,大鼠日自倍,小鼠日自半,問(wèn)幾何日相逢?”問(wèn)相逢時(shí)大鼠穿墻3$\frac{8}{17}$尺.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.化簡(jiǎn):2$\sqrt{1+sin4}$-$\sqrt{2+2cos4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.圓x2+y2=1與圓(x-1)2+y2=1的公共弦所在的直線方程為2x-1=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.${∫}_{0}^{\frac{π}{2}}$(1+sinx)dx=$\frac{π}{2}$+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知y=sinx,則y′=cosx.

查看答案和解析>>

同步練習(xí)冊(cè)答案