【題目】已知數(shù)列的前n項(xiàng)和為Sn,點(diǎn)在直線上,數(shù)列為等差數(shù)列,且,前9項(xiàng)和為153.

(1)求數(shù)列、的通項(xiàng)公式;

(2)設(shè),數(shù)列的前n項(xiàng)和為,求使不等式對(duì)一切的都成立的最大整數(shù)k.

【答案】(1)an=n+5, (2)18

【解析】試題分析:

(1)由通項(xiàng)公式與前n項(xiàng)和的關(guān)于可得an=n+5;求得數(shù)列的基本量可得

(2)裂項(xiàng)求和可求得,求解關(guān)于n的不等式可知最大整數(shù)k是18.

試題解析:

(1)由已知有,即,

則當(dāng)n≥2時(shí), ,

兩式相減得an=n+5,又a1=S1=6,也符合上式,所以an=n+5,

設(shè){bn}的公差為d,前n項(xiàng)和為Rn,則由已知有,所以b5=17,

所以,所以bn=b3+3(n-3)=3n+2 ;

(2)由(1)得,

所以

由Tn單調(diào)遞增得的最小值為,所以恒成立即,

所以k的最大整數(shù)值為18.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠為了對(duì)新研發(fā)的產(chǎn)品進(jìn)行合理定價(jià),將該產(chǎn)品按事先擬定的價(jià)格進(jìn)行試銷,得到一組檢測(cè)數(shù)據(jù))如下表所示:

試銷價(jià)格

(元)

4

5

6

7

9

產(chǎn)品銷量

(件)

84

83

80

75

68

已知變量具有線性負(fù)相關(guān)關(guān)系,且,,現(xiàn)有甲、乙、丙三位同學(xué)通過計(jì)算求得其回歸直線方程分別為:甲,乙,丙,其中有且僅有一位同學(xué)的計(jì)算結(jié)果是正確的( ).

1)試判斷誰的計(jì)算結(jié)果正確?并求出的值;

2)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與檢測(cè)數(shù)據(jù)的誤差不超過1,則該檢測(cè)數(shù)據(jù)是理想數(shù)據(jù),現(xiàn)從檢測(cè)數(shù)據(jù)中隨機(jī)抽取2個(gè),理想數(shù)據(jù)的個(gè)數(shù),求隨機(jī)變量的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商場(chǎng)銷售某種品牌的空調(diào)器,每周周初購進(jìn)一定數(shù)量的空調(diào)器,商場(chǎng)沒銷售一臺(tái)空調(diào)器可獲利500元,若供大于求,則每臺(tái)多余的空調(diào)器需交保管費(fèi)100元;若供不應(yīng)求,則可從其他商店調(diào)劑供應(yīng),此時(shí)每臺(tái)空調(diào)器僅獲利潤(rùn)200元.

)若該商場(chǎng)周初購進(jìn)20臺(tái)空調(diào)器,求當(dāng)周的利潤(rùn)(單位:元)關(guān)于當(dāng)周需求量(單位:臺(tái),)的函數(shù)解析式;

)該商場(chǎng)記錄了去年夏天(共10周)空調(diào)器需求量(單位:臺(tái)),整理得下表:

10周記錄的各需求量的頻率作為各需求量發(fā)生的概率,若商場(chǎng)周初購進(jìn)20臺(tái)空調(diào)器,表示當(dāng)周的利潤(rùn)(單位:元),求的分布及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線與雙曲線,有公共焦點(diǎn),點(diǎn)是曲線,在在第一象限的交點(diǎn),

1求雙曲線的方程

2為圓心的圓與雙曲線的一條漸進(jìn)線相切,.已知點(diǎn),過點(diǎn)作互相垂直分別與圓相交的直線,設(shè)被圓解得的弦長(zhǎng)為,被圓截得的弦長(zhǎng)為.試探索是否為定值?請(qǐng)說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓,直線經(jīng)過點(diǎn)A (1,0).

(1)若直線與圓C相切,求直線的方程;

(2)若直線與圓C相交于PQ兩點(diǎn),求三角形CPQ面積的最大值,并求此時(shí)直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校高二奧賽班N名學(xué)生的物理測(cè)評(píng)成績(jī)(滿分120分)分布直方圖如下,已知分?jǐn)?shù)在100~110的學(xué)生數(shù)有21人。

(Ⅰ)求總?cè)藬?shù)N和分?jǐn)?shù)在110~115分的人數(shù)n;

(Ⅱ)現(xiàn)準(zhǔn)備從分?jǐn)?shù)在110~115分的n名學(xué)生(女生占)中任選2人,求其中恰好含有一名女生的概率;

(Ⅲ)為了分析某個(gè)學(xué)生的學(xué)習(xí)狀態(tài),對(duì)其下一階段的學(xué)習(xí)提供指導(dǎo)性建議,對(duì)他前7次考試的數(shù)學(xué)成績(jī)x(滿分150分),物理成績(jī)y進(jìn)行分析,下面是該生7次考試的成績(jī)。

數(shù)學(xué)

88

83

117

92

108

100

112

物理

94

91

108

96

104

101

106

已知該生的物理成績(jī)y與數(shù)學(xué)成績(jī)x是線性相關(guān)的,若該生的數(shù)學(xué)成績(jī)達(dá)到130分,請(qǐng)你估計(jì)他的物理成績(jī)大約是多少?

附:對(duì)于一組數(shù)據(jù)其回歸線的斜率和截距的最小二乘估計(jì)分別為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“奶茶妹妹”對(duì)某時(shí)間段的奶茶銷售量及其價(jià)格進(jìn)行調(diào)查,統(tǒng)計(jì)出售價(jià)元和銷售量杯之間的一組數(shù)據(jù)如下表所示:

價(jià)格

5

5.5

6.5

7

銷售量

12

10

6

4

通過分析,發(fā)現(xiàn)銷售量對(duì)奶茶的價(jià)格具有線性相關(guān)關(guān)系.

(Ⅰ)求銷售量對(duì)奶茶的價(jià)格的回歸直線方程;

(Ⅱ)欲使銷售量為杯,則價(jià)格應(yīng)定為多少?

附:線性回歸方程為,其中,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,等邊三角形ABC的邊長(zhǎng)為4,M,N分別為AB,AC的中點(diǎn),沿MN將△AMN折起,使點(diǎn)A到A′的位置.若平面A′MN與平面MNCB垂直,則四棱錐A′MNCB的體積為________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商店計(jì)劃每天購進(jìn)某商品若干件,商店每銷售1件該商品可獲利50元.若供大于求,剩余商品全部退回,則每件商品虧損10元;若供不應(yīng)求,則從外部調(diào)劑,此時(shí)每件調(diào)劑商品可獲利30元.

若商店一天購進(jìn)該商品10件,求當(dāng)天的利潤(rùn)y單位:元關(guān)于當(dāng)天需求量n單位:件,n∈N的函數(shù)解析式;

商店記錄了50天該商品的日需求量單位:件,整理得下表:

日需求量n

8

9

10

11

12

頻數(shù)

10

10

15

10

5

假設(shè)該店在這50天內(nèi)每天購進(jìn)10件該商品,求這50天的日利潤(rùn)單位:元的平均數(shù);

若該店一天購進(jìn)10件該商品,記“當(dāng)天的利潤(rùn)在區(qū)間”為事件A,求PA的估計(jì)值.

查看答案和解析>>

同步練習(xí)冊(cè)答案