18.已知算法如下:
S=0  i=1
Input  n
while  i<=n
S=S+2*i
i=i+1wend
print  S
end
若輸入變量n的值為3,則輸出變量S的值為12;若輸出變量S的值為30,則變量n的值為5.

分析 根據(jù)流程圖所示的順序,逐框分析程序中各變量、各語句的作用可知:該程序的作用是累加并輸出S=0+2×1+2×2+2×3+…+2n的值,即可計算得解.

解答 解:根據(jù)流程圖所示的順序,該程序的作用是累加并輸出S=0+2×1+2×2+2×3+…+2n,
若輸入變量n的值為3,則輸出變量s的值為S=0+2×1+2×2+2×3=12;
若輸出變量s的值為30,由于0+2×1+2×2+2×3+…+2n=30,得到n=5,則輸入變量n的值為5.
故答案為:12;5.

點評 根據(jù)流程圖(或偽代碼)寫程序的運行結(jié)果,是算法這一模塊最重要的題型,其處理方法是:①分析流程圖(或偽代碼),從流程圖(或偽代碼)中既要分析出計算的類型,又要分析出參與計算的數(shù)據(jù)(如果參與運算的數(shù)據(jù)比較多,也可使用表格對數(shù)據(jù)進行分析管理)⇒②建立數(shù)學模型,根據(jù)第一步分析的結(jié)果,選擇恰當?shù)臄?shù)學模型③解模.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

8.執(zhí)行如圖的程序框圖,輸出s和n,則s的值為9.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.定義在R上的函數(shù)f(x)滿足f(1)=1,且對任意x∈R都有f′(x)<$\frac{1}{3}$,則不等式f(lgx)>$\frac{lgx+2}{3}$的解集為(0,10).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.在正方體ABCD-A1B1C1D1中,面對角線AB1與體對角線BD1所成角等于$\frac{π}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知函數(shù)f(x)=|x-3|-3,g(x)=-|x+1|+4.
(1)若函數(shù)f(x)值不大于2,求x的取值范圍;
(2)若不等式f(x)-g(x)≥m+1的解集為R,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知函數(shù)f(x),當x,y∈R時,恒有f(x+y)=f(x)+f(y).當x>0時,f(x)>0
(1)求證:f(x)是奇函數(shù);
(2)若f(1)=$\frac{1}{2}$,試求f(x)在區(qū)間[-2,6]上的最值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知向量$\overrightarrow a$=(1,2),$\overrightarrow b$=(1,-1),則$\overrightarrow a$•$\overrightarrow b$=( 。
A.-1B.3C.(2,1)D.(3,0)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知直四棱柱ABCD-A1B1C1D1中,底面ABCD為正方形,AA1=2AB,E為AA1的中點,則異面直線BE與CD1所成角的余弦值為(  )
A.$\frac{\sqrt{10}}{10}$B.$\frac{1}{5}$C.$\frac{3\sqrt{10}}{10}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.下列命題中,正確的命題是( 。
A.若z1、z2∈C,z1-z2>0,則z1>z2B.若z∈R,則z•$\overline{z}$=|z|2不成立
C.z1、z2∈C,z1•z2=0,則z1=0或z2=0D.z1、z2∈C,z12+z22=0,則z1=0且z2=0

查看答案和解析>>

同步練習冊答案