6.在正方體ABCD-A1B1C1D1中,面對角線AB1與體對角線BD1所成角等于$\frac{π}{2}$.

分析 以D為原點,DA為x軸,DC為y軸,DD1為z軸,建立空間直角坐標系,利用向量法能求出面對角線AB1與體對角線BD1所成角的大。

解答 解:以D為原點,DA為x軸,DC為y軸,DD1為z軸,建立空間直角坐標系
設(shè)正方體ABCD-A1B1C1D1中棱長為1,
則A(1,0,0),B1(1,1,1),B(1,1,0),D1(0,0,1),
$\overrightarrow{A{B}_{1}}$=(0,1,1),$\overrightarrow{B{D}_{1}}$=(-1,-1,1),
∵$\overrightarrow{A{B}_{1}}•\overrightarrow{B{D}_{1}}$=0-1+1=0,
∴$\overrightarrow{A{B}_{1}}•\overrightarrow{B{D}_{1}}$=0,
∴面對角線AB1與體對角線BD1所成角為$\frac{π}{2}$.
故答案為:$\frac{π}{2}$.

點評 本題考查異面直線所成角的大小的求法,是基礎(chǔ)題,解題時要認真審題,注意向量法的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.復(fù)數(shù)z1=a2-2-3ai,z2=a+(a2+2)i,若z1+z2是純虛數(shù),那么實數(shù)a的值為( 。
A.1B.2C.-2D.1或-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知A${\;}_{n}^{2}$=7A${\;}_{n-4}^{2}$,則n=7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知{an}是遞增的等差數(shù)列,a2,a4是方程x2-5x+6=0的根.
(Ⅰ)求{an}的通項公式;
(Ⅱ)若bn=2n•an,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知復(fù)數(shù)z滿足$\overline z$+|z|=2-8i,則|z|2=( 。
A.68B.289C.169D.100

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.將曲線x2+y2=4按伸縮變換公式$\left\{\begin{array}{l}{x′=2x}\\{y′=3y}\end{array}\right.$變換后得到曲線C,求曲線C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知算法如下:
S=0  i=1
Input  n
while  i<=n
S=S+2*i
i=i+1wend
print  S
end
若輸入變量n的值為3,則輸出變量S的值為12;若輸出變量S的值為30,則變量n的值為5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.袋中有大小相同的10個乒乓球,其中6個黃色球,4個白色球,要求不放回抽樣,每次任取一球,取2次,第二次才取到黃色球的概率為$\frac{4}{15}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖,某工廠根據(jù)生產(chǎn)需要制作一種下部是圓柱、上部是圓錐的封閉型組合體存儲設(shè)備,該組合體總高度為8米,圓柱的底面半徑為4米,圓柱的高不小于圓柱的底面半徑.已知制作圓柱側(cè)面和底面的造價均為每平米2百元,制作圓錐側(cè)面的造價為每平米4百元,設(shè)制作該存儲設(shè)備的總費用為y百元.
(1)按下列要求寫出函數(shù)關(guān)系式:
①設(shè)OO1=h(米),將y表示成h的函數(shù)關(guān)系式;
②設(shè)∠SDO1=θ(rad),將y表示成θ的函數(shù)關(guān)系式;
(2)請你選用其中的一個函數(shù)關(guān)系式,求制作該存儲設(shè)備總費用的最小值.

查看答案和解析>>

同步練習(xí)冊答案