7.設(shè)F1、F2分別為雙曲線$\frac{x^2}{16}$-$\frac{y^2}{9}$=1的左右焦點(diǎn),M是雙曲線的右支上一點(diǎn),則△MF1F2的內(nèi)切圓圓心的橫坐標(biāo)為(  )
A.2B.3C.4D.5

分析 根據(jù)雙曲線的性質(zhì),利用切線長(zhǎng)定理,再利用雙曲線的定義,把|PF1|-|PF2|=6,轉(zhuǎn)化為|HF1|-|HF2|=6,從而求得點(diǎn)H的橫坐標(biāo).

解答 解:如圖所示:F1(-5,0)、F2(5,0),
設(shè)內(nèi)切圓與x軸的切點(diǎn)是點(diǎn)H,PF1、PF2與內(nèi)切圓的切點(diǎn)分別為M、N,
∵由雙曲線的定義可得|PF1|-|PF2|=2a=8,
由圓的切線長(zhǎng)定理知,|PM|=|PN|,故|MF1|-|NF2 |=8,
即|HF1|-|HF2|=8,
設(shè)內(nèi)切圓的圓心橫坐標(biāo)為x,則點(diǎn)H的橫坐標(biāo)為x,
故 (x+5)-(5-x)=8,
∴x=4.
故選:C.

點(diǎn)評(píng) 本題考查雙曲線的定義、切線長(zhǎng)定理,體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想以及數(shù)形結(jié)合的數(shù)學(xué)思想,正確運(yùn)用雙曲線的定義是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.復(fù)數(shù)i(3+4i)=( 。
A.-4+3iB.4+3iC.3-4iD.3+4i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.設(shè)P為有公共焦點(diǎn)F1,F(xiàn)2的橢圓C1與雙曲線C2的一個(gè)交點(diǎn),且PF1⊥PF2,橢圓C1的離心率為e1,雙曲線C2的離心率為e2,若3e1=e2,則e1=$\frac{\sqrt{5}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+2x+3,x>-1}\\{{2}^{x+1}-1,x≤-1}\end{array}\right.$,已知f(a)=3,則a的值是( 。
A.0B.-2C.0或-2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知函數(shù)f(x)=2cos2x+$\sqrt{3}$sin2x,x∈R.
(1)求函數(shù)f(x)的最小正周期及單調(diào)遞增區(qū)間;
(2)當(dāng)x∈($\frac{π}{12}$,$\frac{π}{3}$)時(shí),求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.利用夾逼準(zhǔn)則求極限$\underset{lim}{n→∞}$$\frac{{2}^{n}}{n!}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知函數(shù)f(x)對(duì)任意實(shí)數(shù)x,y均有f(x)=f($\frac{x+y}{2}$)+f($\frac{x-y}{2}$).當(dāng)x>0時(shí),f(x)>0
(1)判斷函數(shù)f(x)在R上的單調(diào)性并證明;
(2)設(shè)函數(shù)g(x)與函數(shù)f(x)的奇偶性相同,當(dāng)x≥0時(shí),g(x)=|x-m|-m(m>0),若對(duì)任意x∈R,不等式g(x-1)≤g(x)恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.某幾何體的三視圖如圖所示,則該幾何體的體積是$\frac{32}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.下列函數(shù),是偶函數(shù),且周期為π的是( 。
A.y=cos2x-sin2xB.y=sin2x+cos2xC.y=cos2x-sin2xD.y=sin2x+cosx

查看答案和解析>>

同步練習(xí)冊(cè)答案