【題目】如圖,在直四棱柱ABCDA1B1C1D1中,底面ABCD為菱形,EDD1中點(diǎn).

1)求證:BD1∥平面ACE;

2)求證:BD1AC.

【答案】1)見解析;(2)見解析

【解析】

1)設(shè)ACBD交于點(diǎn)O,連接OE,根據(jù)菱形的性質(zhì)和三角形的中位線定理可得OED1B,再由線面平行的判定定理可得證;

2)由菱形的性質(zhì)可得ACBD,再由線面垂直的性質(zhì)得DD1AC,根據(jù)線面垂直的判定和性質(zhì)可得證.

1)設(shè)ACBD交于點(diǎn)O,連接OE,∵底面ABCD是菱形,∴ODB中點(diǎn),又因?yàn)?/span>EDD1的中點(diǎn),∴OED1B,

OEAEC,BD1平面AEC,∴BD1∥平面ACE.

2)∵底面ABCD是菱形,∴ACBD,∵DD1⊥底面ABCD,∴DD1AC,且DBDD1D

AC⊥平面BDB1D1.BD1平面BDD1B1,∴ACBD1.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(1)經(jīng)統(tǒng)計(jì),在某儲蓄所一個(gè)營業(yè)窗口排隊(duì)等候的人數(shù)及相應(yīng)概率如下:

排隊(duì)人數(shù)

0

1

2

3

4

5人及5人以上

概率

求至少3人排隊(duì)等候的概率是多少?

(2)在區(qū)間上隨機(jī)取兩個(gè)數(shù)m,n,求關(guān)于x的一元二次方程有實(shí)根的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x3+ax2+bx+c,曲線y=f(x)在點(diǎn)P(1,f(1))處的切線方程為y=3x+1,y=f(x)x=-2處有極值.

(1)f(x)的解析式.

(2)y=f(x)[-3,1]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在五面體中,側(cè)面是正方形,是等腰直角三角形,點(diǎn)是正方形對角線的交點(diǎn),.

(1)證明:平面

(2)若側(cè)面與底面垂直,求五面體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若數(shù)列、滿足 (N*),則稱為數(shù)列的“偏差數(shù)列”.

(1)若為常數(shù)列,且為的“偏差數(shù)列”,試判斷是否一定為等差數(shù)列,并說明理由;

(2)若無窮數(shù)列是各項(xiàng)均為正整數(shù)的等比數(shù)列,且,為數(shù)列的“偏差數(shù)列”,求的值;

(3)設(shè)為數(shù)列的“偏差數(shù)列”,,,若對任意恒成立,求實(shí)數(shù)M的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面是菱形,點(diǎn)在線段PC上,且三棱錐的體積是四棱錐的體積的,,平面.

1)若的中點(diǎn),證明:直線∥平面;

2)求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,以為極點(diǎn),軸的非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,直線的參數(shù)方程為為參數(shù),直線與曲線分別交于兩點(diǎn).

(1)若點(diǎn)的極坐標(biāo)為,求的值;

(2)求曲線的內(nèi)接矩形周長的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱ABC-A1B1C1中,點(diǎn)M,N分別為線段A1B,B1C的中點(diǎn).

(1)求證:MN∥平面AA1C1C;

(2)若∠ABC=90°,AB=BC=2,AA1=3,求點(diǎn)B1到面A1BC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某年級100名學(xué)生期中考試數(shù)學(xué)成績(單位:分)的頻率分布直方圖如圖所示,其中成績分組區(qū)間是[50,60),[60,70)[70,80)[80,90)[90,100].

1)求圖中a的值,并根據(jù)頻率分布直方圖估計(jì)這100名學(xué)生數(shù)學(xué)成績的平均分;

2)從[7080)[80,90)分?jǐn)?shù)段內(nèi)采用分層抽樣的方法抽取5名學(xué)生,求在這兩個(gè)分?jǐn)?shù)段各抽取的人數(shù);

3)現(xiàn)從第(2)問中抽取的5名同學(xué)中任選2名參加某項(xiàng)公益活動(dòng),求選出的兩名同學(xué)均來自[70,80)分?jǐn)?shù)段內(nèi)的概率.

查看答案和解析>>

同步練習(xí)冊答案