18.在△ABC中,點M是邊BC上的一點,BM=3,AC=2$\sqrt{10}$,∠B=45°,cos∠BAM=$\frac{3\sqrt{10}}{10}$.
(I)求線段AM的長度;
(Ⅱ)求線段MC的長度.

分析 (I)在△ABM中使用正弦定理解出AM;
(II)求出cos∠AMB,得出cos∠AMC,在△AMC中使用余弦定理列方程解出MC.

解答 解:(I)∵cos∠BAM=$\frac{3\sqrt{10}}{10}$,∴sin∠BAM=$\frac{\sqrt{10}}{10}$.
在△ABM中,由正弦定理得:$\frac{BM}{sin∠BAM}=\frac{AM}{sinB}$,即$\frac{3}{\frac{\sqrt{10}}{3}}=\frac{AM}{\frac{\sqrt{2}}{2}}$,
解得AM=3$\sqrt{5}$.
(II)cos∠AMB=-cos(∠BAM+∠B)=sin∠BAMsinB-cos∠BAMcosB=$\frac{\sqrt{10}}{10}×\frac{\sqrt{2}}{2}-\frac{3\sqrt{10}}{10}×\frac{\sqrt{2}}{2}$=-$\frac{\sqrt{5}}{5}$.
∵∠AMB+∠AMC=π,
∴cos∠AMC=-cos∠AMB=$\frac{\sqrt{5}}{5}$.
在△AMC中,由余弦定理得cos∠AMC=$\frac{A{M}^{2}+M{C}^{2}-A{C}^{2}}{2AM•MC}$,
即$\frac{\sqrt{5}}{5}$=$\frac{45+M{C}^{2}-40}{6\sqrt{5}MC}$,解得MC=1或MC=5.

點評 本題考查了正弦定理,余弦定理解三角形,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

8.S=${C}_{27}^{1}$+${C}_{27}^{2}$+…+${C}_{27}^{27}$除以9的余數(shù)是(  )
A.8B.7C.6D.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.若角α的終邊是一次函數(shù)y=2x(x≥0)所表示的曲線,求sin2α.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.過點P(2,1)作直線l交x軸,y軸的正半軸于A、B兩點,O為原點.求:
(1)當△AOB面積最小時的直線l的方程;
(2)當|OA|+|OB|最小時,求直線l的方程;
(3)當|PA|•|PB|最小時,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.已知(m+x)7=a0+a1(1-x)+a2(1-x)2+…+a7(1-x)7,a0-a1+a2-a3+…-a7=37,則|a0|+|a1|+|a2|+…+|a7|=(  )
A.1B.2187C.2188D.-2187

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.設f(α)=$\frac{2sin(π+α)cos(π-α)-cos(π+α)}{1+si{n}^{2}α+sin(π-α)-co{s}^{2}(π-α)}$.
(1)若α=-$\frac{17}{6}$π,求f(α)的值;
(2)若α是銳角,且sin(α-$\frac{3}{2}$π)=$\frac{3}{5}$,求f(α)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知$\overrightarrow{AB}$=(2,4),$\overrightarrow{BC}$=(1,-2),$\overrightarrow{OC}$=$\frac{1}{2}$$\overrightarrow{AC}$,求點C的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.下列說法正確的是( 。
A.P(B|A)<P(AB)B.P(B|A)=$\frac{P(B)}{P(A)}$是可能的
C.0<P(B|A)<1D.P(A|A)=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.如圖,△ABC中,AB=4,BC=2,∠ABC=∠D=60°,△ADC是銳角三角形,DA+DC的取值范圍為$(6,4\sqrt{3}]$.

查看答案和解析>>

同步練習冊答案