19.對(duì)于正整數(shù)n,設(shè)曲線y=xn(2-x)在x=2處的切線與y軸交點(diǎn)的縱坐標(biāo)為an,則數(shù)列{an}的前n項(xiàng)和為Sn=2n+2-4.

分析 利用導(dǎo)數(shù)的幾何意義求出切線方程為y=-2n(x-2),從而得到an=2n+1,利用等比數(shù)列的求和公式能求出Sn

解答 解:∵y=xn(2-x),∴y'=2nxn-1-(n+1)xn,
∴曲線y=xn(2-x)在x=2處的切線的斜率為k=n2n-(n+1)2n=-2n,
切點(diǎn)為(2,0),
∴切線方程為y=-2n(x-2),
令x=0得an=2n+1,
∴Sn=$\frac{4(1-{2}^{n})}{1-2}$=2n+2-4,
故答案為:2n+2-4.

點(diǎn)評(píng) 考查學(xué)生利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程的能力,以及利用等比數(shù)列的求和公式進(jìn)行數(shù)列求和的能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知函數(shù)f(x)=3x,x∈[-1,1],函數(shù)g(x)=[f(x)]2-2af(x)+3.
(Ⅰ)當(dāng)a=0時(shí),求函數(shù)g(x)的值域;
(Ⅱ)若函數(shù)g(x)的最小值為h(a),求h(a)的表達(dá)式;
(Ⅲ)是否存在實(shí)數(shù)m,n同時(shí)滿足下列兩個(gè)條件:①m>n>3;②當(dāng)h(a)的定義域?yàn)閇n,m]時(shí),值域?yàn)閇n2,m2]?若存在,求出m,n的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.“x≤2或x≥5”是“x2-7x+10>0”的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.直線y=kx-1與曲線2x2-y2=2有且僅有一個(gè)公共點(diǎn),則k=±$\sqrt{2}$或±$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.如圖,四邊形ABCD是梯形,AB∥CD,∠ADC=90°,四邊形ADEF是矩形,且平面
ABCD丄平面ADEF,AB=AD=1,DE=CD=2,M是線段CE的中點(diǎn).
(Ⅰ)求證:AC∥平面DMF;
(Ⅱ)求平面DMF與平面ABCD所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.“m>0”是“x2+x+m=0無(wú)實(shí)根”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.某學(xué)校為了解三年級(jí)、六年級(jí)、九年級(jí)這三個(gè)年級(jí)學(xué)生的視力情況,擬從中抽取一定比例的學(xué)生進(jìn)行調(diào)杳,則最合理的抽樣方法是( 。
A.抽簽法B.系統(tǒng)抽樣法C.分層抽樣法D.隨機(jī)數(shù)法

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.函數(shù)y=lnx與y=-2x+6的圖象有交點(diǎn)P(x0,y0),若x0∈(k,k+1),則整數(shù)k的值為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.函數(shù)f(x)=3sin(2x-$\frac{π}{3}$)的圖象的一條對(duì)稱軸是( 。
A.$x=\frac{π}{3}$B.$x=\frac{5π}{12}$C.$x=\frac{π}{2}$D.$x=\frac{5π}{6}$

查看答案和解析>>

同步練習(xí)冊(cè)答案