17.已知函數(shù)$f(x)=\frac{{\sqrt{|x|}}}{e^x}$(x∈R),若關于x的方程f(x)-m+1=0恰好有3個不相等的實數(shù)根,則實數(shù)m的取值范圍為( 。
A.$(1,\frac{{\sqrt{2e}}}{2e}+1)$B.$(0,\frac{{\sqrt{2e}}}{2e})$C.$(1,\frac{1}{e}+1)$D.$(\frac{{\sqrt{2e}}}{2e},1)$

分析 討論x的范圍,求函數(shù)的導數(shù),研究函數(shù)的單調(diào)性和極值,利用數(shù)形結(jié)合進行求解即可.

解答 解:當x≤0時,$f(x)=\frac{{\sqrt{-x}}}{e^x}$為減函數(shù),f(x)min=f(0)=0;
當x>0時,$f(x)=\frac{{\sqrt{x}}}{e^x}$,$f'(x)=\frac{1-2x}{{2\sqrt{x}{e^x}}}$,
則$x>\frac{1}{2}$時,f'(x)<0,$0<x<\frac{1}{2}$時,f'(x)>0,即f(x)在$({0,\;\;\frac{1}{2}})$上遞增,在$({\frac{1}{2},\;\;+∞})$上遞減,
$f{(x)_{極大值}}=f({\frac{1}{2}})=\frac{{\sqrt{2e}}}{2e}$.
其大致圖象如圖所示,

若關于x的方程f(x)-m+1=0恰好有3個不相等的實數(shù)根,
則$0<m-1<\frac{{\sqrt{2e}}}{2e}$,即$1<m<1+\frac{{\sqrt{2e}}}{2e}$,
故選:A.

點評 本題主要考查函數(shù)根的個數(shù)的判斷,利用函數(shù)與方程之間的關系轉(zhuǎn)化為兩個函數(shù)的交點問題,求函數(shù)的導數(shù),利用數(shù)形結(jié)合進行求解是解決本題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

5.已知a為實數(shù),f(x)=x3+$\frac{1}{2}$ax2-6x+4.
(1)當a=-3時,求f(x)在[-2,3]上的最大值和最小值;
(2)若f(x)在[-1,1]上單調(diào)遞減,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.四面體ABCD中,∠CDB=∠CAB=90°,∠BCD=∠BCA=30°,BC=2,點D在平面ABC上的射影在棱BC上,點M在棱BD上,BM=λBD.
(Ⅰ)求證:AD⊥BC;
(Ⅱ)二面角A-MC-B的余弦值為$\frac{\sqrt{5}}{5}$,求λ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.在四棱錐P-ABCD中,底面ABCD為矩形,側(cè)棱PD⊥底面ABCD,且PD=CD=$\frac{\sqrt{2}}{2}$BC,過棱PC的中點E,作EF⊥PB交PB于點F,連接DE,DF,BD,BE.
(1)證明:PB⊥平面DEF;
(2)求異面直線AD與BE所成角的余弦值;
(3)二面角B-DE-F的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.在平面直角坐標系xOy中,曲線C1:$\left\{{\begin{array}{l}{x=a+acosφ}\\{y=asinφ}\end{array}}$(φ為參數(shù),實數(shù)a>0),曲線C2:$\left\{{\begin{array}{l}{x=bcosφ}\\{y=b+bsinφ}\end{array}}$(φ為參數(shù),實數(shù)b>0).在以O為極點,x軸的正半軸為極軸的極坐標系中,射線l:θ=α(ρ≥0,0≤α≤$\frac{π}{2}$)與C1交于O、A兩點,與C2交于O、B兩點.當α=0時,|OA|=1;當α=$\frac{π}{2}$時,|OB|=2.
(Ⅰ)求a,b的值;
(Ⅱ)求2|OA|2+|OA|•|OB|的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.在四棱錐P-ABCD中,底面ABCD是正方形.側(cè)棱PA⊥底面ABCD.M、N分別為PD、AC的中點.
(1)證明:平面PAC⊥平面MND:
2)若直線MN與平面ABCD所成角的余弦值為$\frac{2\sqrt{5}}{5}$.求二面角A-MN-D的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知函數(shù)f(x)=$\sqrt{3}$sinωxcosωx-cos2ωx+$\frac{3}{2}$(ω∈R)的最小正周期為π,且圖象關于直線x=$\frac{π}{6}$對稱.
(1)求f(x)的解析式;
(2)若函數(shù)g(x)=f(-x))+a(0$≤x≤\frac{π}{2}$)有且只有一個零點,求實數(shù)a的取值范圍;
(3)若x1,x2是(2)中函數(shù)g(x)的兩個不同零點,求證:x1+x2=$\frac{2π}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.若點P(2,4)在直線l:$\left\{\begin{array}{l}{x=1+t}\\{y=3-at}\end{array}\right.$(t為參數(shù))上,則a的值為(  )
A.3B.2C.1D.-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.已知三棱錐P-ABC中,底面△ABC是邊長為3的等邊三角形,側(cè)棱長都相等,半徑為$\sqrt{7}$的球O過三棱錐P-ABC的四個頂點,則點P到面ABC的距離為$\sqrt{7}±2$.

查看答案和解析>>

同步練習冊答案