7.已知三棱錐P-ABC中,底面△ABC是邊長(zhǎng)為3的等邊三角形,側(cè)棱長(zhǎng)都相等,半徑為$\sqrt{7}$的球O過(guò)三棱錐P-ABC的四個(gè)頂點(diǎn),則點(diǎn)P到面ABC的距離為$\sqrt{7}±2$.

分析 設(shè)P在底面的射影是E,則E為底面正三角形的中心.連接AE并延長(zhǎng)交BC于D,則三棱錐P-ABC的外接球的球心O在PE上,連接OA,在Rt△AOE中算出OE=2,由PE=PO±OE得答案.

解答 解:根據(jù)題意,三棱錐P-ABC是正三棱錐,設(shè)P在底面的射影是E,則E為底面正三角形的中心.
連接AE并延長(zhǎng)交BC于D,則三棱錐P-ABC的外接球的球心O在PE上,連接OA,
∵△ABC是邊長(zhǎng)為3的等邊三角形,
∴AE=$\frac{2}{3}AD=\frac{2}{3}\sqrt{{3}^{2}-(\frac{3}{2})^{2}}=\frac{2}{3}×\frac{3}{2}\sqrt{3}=\sqrt{3}$,
又AO=$\sqrt{7}$,
∴$OE=\sqrt{O{A}^{2}-A{E}^{2}}=\sqrt{(\sqrt{7})^{2}-(\sqrt{3})^{2}}=2$,
∴PE=PO±OE=$\sqrt{7}±2$.
故答案為:$\sqrt{7}±2$.

點(diǎn)評(píng) 本題考查空間中點(diǎn)線面位置關(guān)系的應(yīng)用,考查空間想象能力和思維能力,著重考查了正棱錐的性質(zhì)和球內(nèi)接多面體的計(jì)算等知識(shí),屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知函數(shù)$f(x)=\frac{{\sqrt{|x|}}}{e^x}$(x∈R),若關(guān)于x的方程f(x)-m+1=0恰好有3個(gè)不相等的實(shí)數(shù)根,則實(shí)數(shù)m的取值范圍為( 。
A.$(1,\frac{{\sqrt{2e}}}{2e}+1)$B.$(0,\frac{{\sqrt{2e}}}{2e})$C.$(1,\frac{1}{e}+1)$D.$(\frac{{\sqrt{2e}}}{2e},1)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.若函數(shù)y=-$\frac{4}{3}$x3+(b-1)x有三個(gè)單調(diào)區(qū)間,則b的取值范圍是b>1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知函數(shù)f(x)=x-sinx,則(  )
A.是增函數(shù)
B.是減函數(shù)
C.在(-∞,0)上單調(diào)遞增,在(0,+∞)上單調(diào)遞減
D.在(-∞,0)上單調(diào)遞減,在(0,+∞)上單調(diào)遞增

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=2-t}\\{y=-\sqrt{3}t}\end{array}\right.$(t為參數(shù)),曲線C的極坐標(biāo)方程為1-3sin2θ=$\frac{2}{{p}^{2}}$.
(1)求直線l的傾斜角和曲線C的直角坐標(biāo)方程;
(2)設(shè)直線l與曲線C交于A,B兩點(diǎn),求|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.若函數(shù)f(x)=alnx+$\frac{1}{2}$ax2-2x在x∈(1,2)內(nèi)存在單調(diào)遞減區(qū)間,則實(shí)數(shù)a的取值范圍是( 。
A.(-∞,1)B.(-∞,$\frac{4}{5}$)C.(0,1)D.(0,$\frac{4}{5}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.函數(shù)f(x)=x-4lnx的單調(diào)減區(qū)間為(0,4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.如圖,△ABC的角平分線AD交外接圓于D,BE為圓的切線,求證:D到BC,BE的距離相等.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知函數(shù)f(x)=(x2-k)ex(e為自然對(duì)數(shù)的底數(shù),e=2.71828,k∈R).
(1)當(dāng)k=3時(shí),求函數(shù)f(x)的單調(diào)區(qū)間和極值;
(2)若對(duì)于任意x∈[1,2],都有f(x)<2x成立,求k的取值范圍;
(3)求函數(shù)y=f(x)在x∈[0,1]上的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案