【題目】一個(gè)四棱錐的三視圖如圖所示,關(guān)于這個(gè)四棱錐,下列說法正確的是( )
A. 最長的棱長為
B. 該四棱錐的體積為
C. 側(cè)面四個(gè)三角形都是直角三角形
D. 側(cè)面三角形中有且僅有一個(gè)等腰三角形
【答案】B
【解析】還原四棱錐,如圖所示,由主視圖可知,底面 計(jì)算可知B正確,故選B.
點(diǎn)睛: 思考三視圖還原空間幾何體首先應(yīng)深刻理解三視圖之間的關(guān)系,遵循“長對正,高平齊,寬相等”的基本原則,其內(nèi)涵為正視圖的高是幾何體的高,長是幾何體的長;俯視圖的長是幾何體的長,寬是幾何體的寬;側(cè)視圖的高是幾何體的高,寬是幾何體的寬.由三視圖畫出直觀圖的步驟和思考方法:1、首先看俯視圖,根據(jù)俯視圖畫出幾何體地面的直觀圖;2、觀察正視圖和側(cè)視圖找到幾何體前、后、左、右的高度;3、畫出整體,然后再根據(jù)三視圖進(jìn)行調(diào)整.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x+2|﹣2|x﹣1|.
(1)解不等式f(x)≥﹣2;
(2)對任意x∈R,都有f(x)≤x﹣a成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知各項(xiàng)為正的數(shù)列{an}是等比數(shù)列,a1=2,a5=32,數(shù)列{bn}滿足:對于任意n∈N* , 有a1b1+a2b2+…+anbn=(n﹣1)2n+1+2.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)令f(n)=a2+a4+…+a2n , 求 的值;
(3)求數(shù)列{bn}通項(xiàng)公式,若在數(shù)列{an}的任意相鄰兩項(xiàng)ak與ak+1之間插入bk(k∈N*)后,得到一個(gè)新的數(shù)列{cn},求數(shù)列{cn}的前100項(xiàng)之和T100 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)對任意的實(shí)數(shù)滿足:f(x+3)=﹣ ,且當(dāng)﹣3≤x<﹣1時(shí),f(x)=﹣(x+2)2 , 當(dāng)﹣1≤x<3時(shí),f(x)=x.則f(1)+f(2)+f(3)+…+f(2016)= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,設(shè)A是單位圓和x軸正半軸的交點(diǎn),P,Q是單位圓上兩點(diǎn),O是坐標(biāo)原點(diǎn),且 ,∠AOQ=α,α∈[0,π). (Ⅰ)若點(diǎn)Q的坐標(biāo)是 ,求 的值;
(Ⅱ)設(shè)函數(shù) ,求f(α)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)P(x,y)是直線kx+y+4=0(k>0)上一動點(diǎn),PA,PB是圓C:x2+y2﹣2y=0的兩條切線,A,B是切點(diǎn),若四邊形PACB的最小面積是2,則k的值為( )
A.3
B.
C.
D.2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四邊形ABCD滿足AD∥BC,BA=AD=DC= BC=a,E是BC的中點(diǎn),將△BAE沿著AE翻折成△B1AE,使面B1AE⊥面AECD,F(xiàn),G分別為B1D,AE的中點(diǎn).
(1)求三棱錐E﹣ACB1的體積;
(2)證明:B1E∥平面ACF;
(3)證明:平面B1GD⊥平面B1DC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,滿足:a2+c2=b2+ ac
(1)求∠B 的大小;
(2)求 cosA+cosC 的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列前三項(xiàng)為a,4,3a,前n項(xiàng)的和為Sn , 若Sk=90.
(1)求a及k的值;
(2)設(shè)bn= ,求數(shù)列{bn}的前n項(xiàng)和.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com