【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,滿足:a2+c2=b2+ ac
(1)求∠B 的大小;
(2)求 cosA+cosC 的最大值.
【答案】
(1)解:∵ ,
∴ ,
∴ ,
又0<∠B<π,
所以, .
(2)解:∵A+B+C=π,
∴ ,
∴ = = =
∵ ,
∵ ,
∴ ,
因此,當(dāng) ,即A= 時,sin(A+ )最大值為1.
所以, cosA+cosC 的最大值為1
【解析】(1)由已知利用余弦定理可求cosB的值,結(jié)合范圍0<∠B<π,即可得解 .(2)利用三角形內(nèi)角和定理,三角函數(shù)恒等變換的應(yīng)用化簡可得: = ,利用范圍 ,根據(jù)正弦函數(shù)的性質(zhì)可求其最大值.
【考點精析】根據(jù)題目的已知條件,利用余弦定理的定義的相關(guān)知識可以得到問題的答案,需要掌握余弦定理:;;.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)
(1)若在點處的切線斜率為,求的值;
(2)求函數(shù)的單調(diào)區(qū)間;
(3)若,求證:在時, .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個四棱錐的三視圖如圖所示,關(guān)于這個四棱錐,下列說法正確的是( )
A. 最長的棱長為
B. 該四棱錐的體積為
C. 側(cè)面四個三角形都是直角三角形
D. 側(cè)面三角形中有且僅有一個等腰三角形
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,已知曲線的參數(shù)方程為(為參數(shù)).以平面直角坐標(biāo)系的原點為極點, 軸正半軸為極軸,取相同的單位長度建立極坐標(biāo)系,直線 的極坐標(biāo)方程為 .
(1)試寫出直線的直角坐標(biāo)方程和曲線的普通方程;
(2)在曲線上求一點,使點到直線的距離最大,并求出此最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱柱ABCD﹣A1B1C1D1中,側(cè)棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,AA1=AB=2,E為棱AA1的中點.
(1)證明B1C1⊥CE;
(2)求二面角B1﹣CE﹣C1的正弦值.
(3)設(shè)點M在線段C1E上,且直線AM與平面ADD1A1所成角的正弦值為 ,求線段AM的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】斜三棱柱A1B1C1﹣ABC中,側(cè)面AA1C1C⊥底面ABC,側(cè)面AA1C1C是菱形,∠A1AC=60°,AC=3,AB=BC=2,E、F分別是A1C1 , AB的中點.
(1)求證:EF∥平面BB1C1C;
(2)求證:CE⊥面ABC.
(3)求四棱錐E﹣BCC1B1的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨機抽取某中學(xué)甲乙兩班各6名同學(xué),測量他們的身高(單位:cm),獲得身高數(shù)據(jù)的莖葉圖如圖,則甲班樣本數(shù)據(jù)的眾數(shù)和乙班樣本數(shù)據(jù)的中位數(shù)分別是( )
A.170,170
B.171,171
C.171,170
D.170,172
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若數(shù)列{an}是等差數(shù)列,首項a1>0,a2003+a2004>0,a2003 . a2004<0,則使前n項和Sn>0成立的最大自然數(shù)n是( )
A.4005
B.4006
C.4007
D.4008
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知橢圓的左、右頂點分別為,上、下頂點分別為,兩個焦點分別為, ,四邊形的面積是四邊形的面積的2倍.
(1)求橢圓的方程;
(2)過橢圓的右焦點且垂直于軸的直線交橢圓于兩點, 是橢圓上位于直線兩側(cè)的兩點.若,求證:直線的斜率為定值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com