11.函數(shù)f(x)=$\frac{\sqrt{4-x}}{x+2}$的定義域?yàn)閧x|x≤4且x≠-2}.

分析 由根式內(nèi)部的代數(shù)式大于等于0,分式的分母不為0聯(lián)立不等式組得答案.

解答 解:由$\left\{\begin{array}{l}{4-x≥0}\\{x+2≠0}\end{array}\right.$,解得x≤4且x≠-2.
∴函數(shù)f(x)=$\frac{\sqrt{4-x}}{x+2}$的定義域?yàn)閧x|x≤4且x≠-2}.
故答案為:{x|x≤4且x≠-2}.

點(diǎn)評(píng) 本題考查函數(shù)的定義域及其求法,是基礎(chǔ)的計(jì)算題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.點(diǎn)P在曲線y=-e-x上,點(diǎn)Q在曲線y=lnx上,線段PQ的中點(diǎn)為M,O是坐標(biāo)原點(diǎn),則線段OM的長(zhǎng)的最小值是$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若曲線$\frac{x^2}{4-m}+\frac{y^2}{13-m}=1$表示雙曲線,則焦點(diǎn)坐標(biāo)為(0,±3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.寫出一個(gè)以橢圓$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1和雙曲線$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1的離心率為根的方程x2-$\frac{5}{2}$x+1=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知一種放射性物質(zhì)經(jīng)過120年剩留原來質(zhì)量的95.76%,設(shè)質(zhì)量為1的這種物質(zhì)經(jīng)過x年后剩量為y,則x、y之間的函數(shù)關(guān)系式為$0.957{6}^{\frac{x}{120}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知雙曲線M:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的一條漸近線方程是$\sqrt{3}$x+y=0,點(diǎn)D(1,$\sqrt{2}$)在C上,過點(diǎn)(0,1)且斜率為k的直線1與雙曲線M交于不同的兩點(diǎn)A、B.
(1)求雙曲線M的方程;
(2)若以線段AB為直徑的圓經(jīng)過坐標(biāo)原點(diǎn)O,求實(shí)數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,點(diǎn)E在直角三角形ABC的斜邊AB上,四邊形CDEF為正方形,已知正方形CDEF的面積等于36.設(shè)AF=x,直角三角形ABC的面積S=f(x).
(Ⅰ)求函數(shù)f(x)表達(dá)式;
(Ⅱ)利用函數(shù)單調(diào)性定義求f(x)的單調(diào)區(qū)間,并求出f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.設(shè)x,y∈R,給出四個(gè)點(diǎn)A(2x-1,y),B(1,1),C(x2+1,4),D(x2-1,1)
(1)若$\overrightarrow{AB}$∥$\overrightarrow{CD}$,把y表示成x的函數(shù)y=f(x);
(2)對(duì)數(shù)列{an},設(shè)a1=a2=1,且${4}^{{a}_{n+1}}$=$\frac{2}{3}$f(an)+$\frac{4}{3}$,(n≥2,n∈N*),求$\underset{lim}{n→∞}$an

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.?dāng)?shù)列{an}中,a1=0,且對(duì)任意k∈N*,a2k-1,a2k,a2k+1成等差數(shù)列,其公差為2k,則Tn=$\frac{{2}^{2}}{{a}_{2}}+\frac{{3}^{2}}{{a}_{3}}+$…+$\frac{4{n}^{2}}{{a}_{2n}}$=4n-$\frac{3}{2}$-$\frac{1}{2n}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案