【題目】已知函數(shù)f(x)=x|x-a|+bx(a,b∈R).
(Ⅰ)當(dāng)b=-1時,函數(shù)f(x)恰有兩個不同的零點,求實數(shù)a的值;
(Ⅱ)當(dāng)b=1時,
①若對于任意x∈[1,3],恒有f(x)≤2x2,求a的取值范圍;
②若a≥2,求函數(shù)f(x)在區(qū)間[0,2]上的最大值g(a).
【答案】(Ⅰ)a=±1(Ⅱ)①a=0②g(a)=.
【解析】
(Ⅰ)求得b=-1時,f(x)的解析式,由f(x)=0,解方程即可得到所求a的值;
(Ⅱ)當(dāng)b=1時,f(x)=x|x-a|+x,
①由題意可得|x-a|+1≤2x,即|x-a|≤2x-1,即有1-2x≤x-a≤2x-1,即1-x≤-a≤x-1,由x的范圍,結(jié)合恒成立思想可得a的范圍;
②求得f(x)的分段函數(shù)形式,討論2≤a<3時,f(x)的單調(diào)性和最值,即可得到所求最大值.
(Ⅰ)當(dāng)b=-1時,f(x)=x|x-a|-x=x(|x-a|-1),
由f(x)=0,解得x=0或|x-a|=1,
由|x-a|=1,解得x=a+1或x=a-1.
由f(x)恰有兩個不同的零點且a+1≠a-1,
可得a+1=0或a-1=0,得a=±1;
(Ⅱ)當(dāng)b=1時,f(x)=x|x-a|+x,
①對于任意x∈[1,3],恒有f(x)≤2x2,
即|x-a|+1≤2x,即|x-a|≤2x-1,
即有1-2x≤x-a≤2x-1,即1-x≤-a≤x-1,
x∈[1,3]時,1-x∈[-2,0],x-1∈[0,2],
可得0≤-a≤0,即a=0;
②f(x)==.
當(dāng)2≤a<3時,<<2≤a,
這時y=f(x)在[0,]上單調(diào)遞增,在[,2]上單調(diào)遞減,
此時g(a)=f()=;
當(dāng)a≥3時,≥2,y=f(x)在[0,2]上單調(diào)遞增,
此時g(a)=f(2)=2a-2.
綜上所述,g(a)=.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= ,曲線y=f(x)在點x=e2處的切線與直線x﹣2y+e=0平行.
(1)若函數(shù)g(x)= f(x)﹣ax在(1,+∞)上是減函數(shù),求實數(shù)a的最小值;
(2)若函數(shù)F(x)=f(x)﹣ 無零點,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)2007年至2013年農(nóng)村居民家庭人均純收入y(單位:千元)的數(shù)據(jù)如表:
年份 | 2007 | 2008 | 2009 | 2010 | 2011 | 2014 | 2013 |
年份代號t | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
人均純收入y | 2.9 | 3.3 | 3.6 | 4.4 | 4.8 | 5.2 | 5.9 |
(1)求y關(guān)于t的線性回歸方程;
(2)利用(1)中的回歸方程,分析2007年至2013年該地區(qū)農(nóng)村居民家庭人均純收入的變化情況,并預(yù)測該地區(qū)2015年農(nóng)村居民家庭人均純收入.
附:回歸直線的斜率和截距的最小二乘估計公式分別為: = , = ﹣ .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知不過第二象限的直線l:ax-y-4=0與圓x2+(y-1)2=5相切.
(1)求直線l的方程;
(2)若直線l1過點(3,-1)且與直線l平行,直線l2與直線l1關(guān)于直線y=1對稱,求直線l2的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=BC=2,∠ABC=120°.若平面ABC外的點P和線段AC上的點D,滿足PD=DA,PB=BA,則四面體PBCD的體積的最大值是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù), ),以原點為極點, 軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求曲線與的直角坐標(biāo)方程;
(2)當(dāng)與有兩個公共點時,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列滿足|an﹣ |≤1,n∈N* .
(1)求證:|an|≥2n﹣1(|a1|﹣2)(n∈N*)
(2)若|an|≤( )n , n∈N* , 證明:|an|≤2,n∈N* .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性 ;
(2)若對任意恒成立,求實數(shù)的取值范圍;
(3)當(dāng)時,若函數(shù)有兩個極值點,求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知1是函數(shù)f(x)=ax2+bx+c(a>b>c)的一個零點,若存在實數(shù)x0.使得f(x0)<0.則f(x)的另一個零點可能是( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com