【題目】已知函數(shù)f(x)= ,曲線y=f(x)在點(diǎn)x=e2處的切線與直線x﹣2y+e=0平行.
(1)若函數(shù)g(x)= f(x)﹣ax在(1,+∞)上是減函數(shù),求實(shí)數(shù)a的最小值;
(2)若函數(shù)F(x)=f(x)﹣ 無零點(diǎn),求k的取值范圍.
【答案】
(1)解:由 ,得 ,解得m=2,
故 ,則 ,函數(shù)g(x)的定義域為(0,1)∪(1,+∞),
而 ,又函數(shù)g(x)在(1,+∞)上是減函數(shù),
∴ 在(1,+∞)上恒成立,
∴當(dāng)x∈(1,+∞)時, 的最大值.
而 ,即右邊的最大值為 ,
∴ ,故實(shí)數(shù)a的最小值 ;
(2)解:由題可得 ,且定義域為(0,1)∪(1,+∞),
要使函數(shù)F(x)無零點(diǎn),即 在(0,1)∪(1,+∞)內(nèi)無解,
亦即 在(0,1)∪(1,+∞)內(nèi)無解.
構(gòu)造函數(shù) ,則 ,
1)當(dāng)k≤0時,h'(x)<0在(0,1)∪(1,+∞)內(nèi)恒成立,
∴函數(shù)h(x)在(0,1)內(nèi)單調(diào)遞減,在(1,+∞)內(nèi)也單調(diào)遞減.
又h(1)=0,∴當(dāng)x∈(0,1)時,h(x)>0,即函數(shù)h(x)在(0,1)內(nèi)無零點(diǎn),
同理,當(dāng)x∈(1,+∞)時,h(x)<0,即函數(shù)h(x)在(1,+∞)內(nèi)無零點(diǎn),
故k≤0滿足條件;
2)當(dāng)k>0時, .
①若0<k<2,則函數(shù)h(x)在(0,1)內(nèi)單調(diào)遞減,在 內(nèi)也單調(diào)遞減,在 內(nèi)單調(diào)遞增.
又h(1)=0,∴h(x)在(0,1)內(nèi)無零點(diǎn);
又 ,而 ,故在 內(nèi)有一個零點(diǎn),∴0<k<2不滿足條件;
②若k=2,則函數(shù)h(x)在(0,1)內(nèi)單調(diào)遞減,在(1,+∞)內(nèi)單調(diào)遞增.
又h(1)=0,∴當(dāng)x∈(0,1)∪(1,+∞)時,h(x)>0恒成立,故無零點(diǎn).∴k=2滿足條件;
③若k>2,則函數(shù)h(x)在 內(nèi)單調(diào)遞減,在 內(nèi)單調(diào)遞增,在(1,+∞)內(nèi)也單調(diào)遞增.
又h(1)=0,∴在 及(1,+∞)內(nèi)均無零點(diǎn).
易知 ,又h(e﹣k)=k×(﹣k)﹣2+2ek=2ek﹣k2﹣2=(k),
則'(k)=2(ek﹣k)>0,則(k)在k>2為增函數(shù),∴(k)>(2)=2e2﹣6>0.
故函數(shù)h(x)在 內(nèi)有一零點(diǎn),k>2不滿足.
綜上:k≤0或k=2
【解析】(1)求出原函數(shù)的導(dǎo)函數(shù),得到函數(shù)在x=e2處的導(dǎo)數(shù),由導(dǎo)數(shù)值等于 求得m值,得到 ,進(jìn)一步求得 ,利用函數(shù)g(x)在(1,+∞)上是減函數(shù),可得 在(1,+∞)上恒成立,分離參數(shù)a,得 .利用配方法求得右邊的最大值可得實(shí)數(shù)a的最小值;(2)由題可得 ,且定義域為(0,1)∪(1,+∞),若函數(shù)F(x)無零點(diǎn),即 在定義域內(nèi)無解,構(gòu)造函數(shù) ,得 ,分當(dāng)k≤0和k>0分類分析得答案.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性的相關(guān)知識可以得到問題的答案,需要掌握一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個區(qū)間內(nèi),(1)如果,那么函數(shù)在這個區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個區(qū)間單調(diào)遞減.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】雙曲線 (a>0,b>0)的左右焦點(diǎn)分別為F1 , F2漸近線分別為l1 , l2 , 位于第一象限的點(diǎn)P在l1上,若l2⊥PF1 , l2∥PF2 , 則雙曲線的離心率是( )
A.
B.
C.2
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,圓錐曲線C的極坐標(biāo)方程為p2= ,定點(diǎn)A(0,﹣ ),F(xiàn)1 , F2是圓錐曲線C的左、右焦點(diǎn),直線l經(jīng)過點(diǎn)F1且平行于直線AF2 .
(1)求圓錐曲線C的直角坐標(biāo)方程和直線l的參數(shù)方程;
(2)若直線l與圓錐曲線C交于M,N兩點(diǎn),求|F1M||F1N|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐C的底面是正方形,PA⊥平面ABCD,PA=2,∠PDA=45°,點(diǎn)E、F分別為棱AB、PD的中點(diǎn).
(1)求證:AF∥平面PEC
(2)求證:平面PCD⊥平面PEC;
(3)求三棱錐C-BEP的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知.
(1)當(dāng)時,判斷在的單調(diào)性,并用定義證明;
(2)若對恒成立,求的取值范圍;
(3)討論的零點(diǎn)的個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,某機(jī)器人的運(yùn)動軌道是邊長為1米的正三角形ABC,開機(jī)后它從A點(diǎn)出發(fā),沿軌道先逆時針運(yùn)動再順時針運(yùn)動,每運(yùn)動6米改變一次運(yùn)動方向(假設(shè)按此方式無限運(yùn)動下去),運(yùn)動過程中隨時記錄逆時針運(yùn)動的總路程s1和順時針運(yùn)動的總路程s2,x為該機(jī)器人的“運(yùn)動狀態(tài)參數(shù)”,規(guī)定:逆時針運(yùn)動時x=s1,順時針運(yùn)動時x=-s2,機(jī)器人到A點(diǎn)的距離d與x滿足函數(shù)關(guān)系d=f(x),現(xiàn)有如下結(jié)論:
①f(x)的值域為[0,1];
②f(x)是以3為周期的函數(shù);
③f(x)是定義在R上的奇函數(shù);
④f(x)在區(qū)間[-3,-2]上單調(diào)遞增.
其中正確的有_________(寫出所有正確結(jié)論的編號).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=(ex+1)(ax+2a﹣2),若存在x∈(0,+∞),使得不等式f(x)﹣2<0成立,則實(shí)數(shù)a的取值范圍是( )
A.(0,1)
B.(0, )
C.(﹣∞,1)
D.(﹣∞, )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示幾何體ABC﹣A1B1C1中,A1、B1、C1在面ABC上的射影分別是線段AB、BC、AC的中點(diǎn),面A1B1C1∥面ABC,△ABC是邊長為2的等邊三角形.
(1)求證:△A1B1C1是等邊三角形;
(2)若面ACB1A1⊥面BA1B1 , 求該幾何體ABC﹣A1B1C1的體積;
(3)在(2)的條件下,求面ABC與面A1B1B所成的銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x|x-a|+bx(a,b∈R).
(Ⅰ)當(dāng)b=-1時,函數(shù)f(x)恰有兩個不同的零點(diǎn),求實(shí)數(shù)a的值;
(Ⅱ)當(dāng)b=1時,
①若對于任意x∈[1,3],恒有f(x)≤2x2,求a的取值范圍;
②若a≥2,求函數(shù)f(x)在區(qū)間[0,2]上的最大值g(a).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com