【題目】火車站有某公司待運的甲種貨物,乙種貨物,現(xiàn)計劃用AB兩種型號的貨廂共50節(jié)運送這批貨物,已知35t甲種貨物和15乙種貨物可裝滿一節(jié)A型貨廂,25t甲種貨物和35乙種貨物可裝滿一節(jié)B型貨廂,據(jù)此安排AB兩種貨廂的節(jié)數(shù),共有幾種方案?若每節(jié)A型貨廂的運費是0.5萬元,每節(jié)B型貨用的運費是0.8萬元,哪種方案的運費較少?

【答案】見解析

【解析】

根據(jù)不等關(guān)系列出相應(yīng)不等式以及方程,解出型貨廂的節(jié)數(shù),可分為三種方案,根據(jù)相應(yīng)貨廂的運費,得出方案三運費較少.

解:設(shè)安排A型貨廂x節(jié),B型貨廂y節(jié),總運費為z

所以,所以

又因為,所以.

所以共有三種方案,方案一安排A型貨廂28節(jié),B型貨廂22節(jié);

方案二安排A型貨廂29節(jié),B型貨廂21節(jié);

方案三安排A型貨廂30節(jié),B型貨廂20節(jié).

當(dāng)時,總運費(萬元)此時運費較少.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列結(jié)論中正確的是(

A.已知函數(shù)的定義域為,且在任何區(qū)間內(nèi)的平均變化率均比在同一區(qū)間內(nèi)的平均變化率小,則函數(shù)上是減函數(shù);

B.已知總體的各個個體的值由小到大依次為2,3,3,7,10,11,12,,18,20,且總體的平均數(shù)為10,則這組數(shù)的75%分位數(shù)為13;

C.方程的解集為

D.一次函數(shù)一定存在反函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)=logax1)(a0,且a≠1).

1)若fx)在[2,9]上的最大值與最小值之差為3,求a的值;

2)若a1,求不等式f2x)>0的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是一個幾何體的平面展開圖,其中四邊形為正方形,,,,為全等的等邊三角形,、分別為、的中點,在此幾何體中,下列結(jié)論中正確的個數(shù)有()

①平面平面

②直線與直線是異面直線

③直線與直線共面

④面與面的交線與平行

A. 3B. 2C. 1D. 0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), ,函數(shù)的圖象在點處的切線平行于軸.

(1)求的值;

(2)求函數(shù)的極小值;

(3)設(shè)斜率為的直線與函數(shù)的圖象交于兩點, ,證明: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)將100名高一新生分成水平相同的甲、乙兩個平行班,每班50人,某教師采用、兩種不同的教學(xué)模式分別在甲、乙兩個班進(jìn)行教改實驗,為了了解教學(xué)效果,期末考試后,該教師分別從兩班中各隨機抽取20名學(xué)生的成績進(jìn)行統(tǒng)計,作出莖葉圖如圖所示,記成績不低于90分為“成績優(yōu)秀”.

(1)在乙班的20個個體中,從不低于86分的成績中隨機抽取2人,求抽出的兩個人均“成績優(yōu)秀”的概率;

(2)由以上統(tǒng)計數(shù)據(jù)填寫列聯(lián)表;能否在犯錯誤的概率不超過0.10的前提下認(rèn)為成績優(yōu)秀與教學(xué)模型有關(guān).

甲班(

乙班(

總計

成績優(yōu)秀

成績不優(yōu)秀

總計

附:.

0.25

0.15

0.10

0.05

0.025

1.323

2.072

2.706

3.847

5.024

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著共享單車的成功運營,更多的共享產(chǎn)品逐步走人大家的世界,共享汽車、共享籃球、共享充電寶等各種共享產(chǎn)品層出不窮廣元某景點設(shè)有共享電動車租車點,共享電動車的收費標(biāo)準(zhǔn)是每小時2不足1小時的部分按1小時計算甲、乙兩人各租一輛電動車,若甲、乙不超過一小時還車的概率分別為;一小時以上且不超過兩小時還車的概率分別為;兩人租車時間都不會超過三小時.

求甲、乙兩人所付租車費用相同的概率;

設(shè)甲、乙兩人所付的租車費用之和為隨機變量,求的分布列與數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商場銷售某種商品的經(jīng)驗表明,該商品每日的銷售量(單位:千克)與銷售價格(單位:元/千克)滿足關(guān)系式,其中為常數(shù).已知銷售價格為5元/千克時,每日可售出該商品13千克.

(1)求的值;

(2)若該商品的成本為3元/千克,試確定銷售價格的值,使商場每日銷售該商品所獲得的利潤最大,并求出最大利潤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校響應(yīng)教育部門疫情期間“停課不停學(xué)”的號召,實施網(wǎng)絡(luò)授課,為檢驗學(xué)生上網(wǎng)課的效果,高三學(xué)年進(jìn)行了一次網(wǎng)絡(luò)模擬考試.全學(xué)年共1500人,現(xiàn)從中抽取了100人的數(shù)學(xué)成績,繪制成頻率分布直方圖(如圖所示).已知這100人中分?jǐn)?shù)段的人數(shù)比分?jǐn)?shù)段的人數(shù)多6人.

1)根據(jù)頻率分布直方圖,求a,b的值,并估計抽取的100名同學(xué)數(shù)學(xué)成績的中位數(shù);(中位數(shù)保留兩位小數(shù))

2)現(xiàn)用分層抽樣的方法從分?jǐn)?shù)在,的兩組同學(xué)中隨機抽取6名同學(xué),從這6名同學(xué)中再任選2名同學(xué)作為“網(wǎng)絡(luò)課堂學(xué)習(xí)優(yōu)秀代表”發(fā)言,求這2名同學(xué)的分?jǐn)?shù)不在同一組內(nèi)的概率.

查看答案和解析>>

同步練習(xí)冊答案