若雙曲線方程為x2-2y2=1,則它的左焦點的坐標為________.

 

【解析】∵雙曲線方程可化為x2-=1,∴a2=1,b2=.∴c2=a2+b2=,c=.∴左焦點坐標為.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點引領(lǐng)+技巧點撥第十一章第4課時練習(xí)卷(解析版) 題型:解答題

已知盒中有10個燈泡,其中8個正品,2個次品.需要從中取出2只正品,每次取一個,取出后不放回,直到取出2個正品為止.設(shè)X為取出的次數(shù),求X的概率分布列.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點引領(lǐng)+技巧點撥第九章第9課時練習(xí)卷(解析版) 題型:解答題

在平面直角坐標系xOy中,拋物線C的頂點在原點,經(jīng)過點A(2,2),其焦點F在x軸上.

(1)求拋物線C的標準方程;

(2)求過點F,且與直線OA垂直的直線的方程;

(3)設(shè)過點M(m,0)(m>0)的直線交拋物線C于D、E兩點,ME=2DM,記D和E兩點間的距離為f(m),求f(m)關(guān)于m的表達式.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點引領(lǐng)+技巧點撥第九章第8課時練習(xí)卷(解析版) 題型:填空題

若雙曲線=1的離心率e=2,則m=________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點引領(lǐng)+技巧點撥第九章第8課時練習(xí)卷(解析版) 題型:解答題

已知雙曲線的離心率等于2,且經(jīng)過點M(-2,3),求雙曲線的標準方程.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點引領(lǐng)+技巧點撥第九章第7課時練習(xí)卷(解析版) 題型:解答題

已知橢圓=1(a>b>0)的離心率為,且過點P,A為上頂點,F(xiàn)為右焦點.點Q(0,t)是線段OA(除端點外)上的一個動點,過Q作平行于x軸的直線交直線AP于點M,以QM為直徑的圓的圓心為N.

(1)求橢圓方程;

(2)若圓N與x軸相切,求圓N的方程;

(3)設(shè)點R為圓N上的動點,點R到直線PF的最大距離為d,求d的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點引領(lǐng)+技巧點撥第九章第7課時練習(xí)卷(解析版) 題型:解答題

已知橢圓的中心為坐標原點O,橢圓短半軸長為1,動點M(2,t)(t>0)在直線x=(a為長半軸,c為半焦距)上.

(1)求橢圓的標準方程;

(2)求以O(shè)M為直徑且被直線3x-4y-5=0截得的弦長為2的圓的方程;

(3)設(shè)F是橢圓的右焦點,過點F作OM的垂線與以O(shè)M為直徑的圓交于點N,求證:線段ON的長為定值,并求出這個定值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點引領(lǐng)+技巧點撥第九章第6課時練習(xí)卷(解析版) 題型:填空題

橢圓=1的離心率為,則k的值為________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點引領(lǐng)+技巧點撥第九章第4課時練習(xí)卷(解析版) 題型:解答題

已知圓M過兩點A(1,-1),B(-1,1),且圓心M在x+y-2=0上.

(1)求圓M的方程;

(2)設(shè)P是直線3x+4y+8=0上的動點,PA′、PB′是圓M的兩條切線,A′、B′為切點,求四邊形PA′MB′面積的最小值.

 

查看答案和解析>>

同步練習(xí)冊答案