已知橢圓的中心為坐標(biāo)原點O,橢圓短半軸長為1,動點M(2,t)(t>0)在直線x=(a為長半軸,c為半焦距)上.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)求以O(shè)M為直徑且被直線3x-4y-5=0截得的弦長為2的圓的方程;

(3)設(shè)F是橢圓的右焦點,過點F作OM的垂線與以O(shè)M為直徑的圓交于點N,求證:線段ON的長為定值,并求出這個定值.

 

(1)+y2=1(2)(x-1)2+(y-2)2=5(3)

【解析】(1)【解析】
由點M在準(zhǔn)線上,得=2,故=2,∴c=1,從而a=,所以橢圓方程為+y2=1.

(2)【解析】
以O(shè)M為直徑的圓的方程為x(x-2)+y(y-t)=0,即(x-1)2++1,其圓心為,半徑r=,因為以O(shè)M為直徑的圓被直線3x-4y-5=0截得的弦長為2,所以圓心到直線3x-4y-5=0的距離d=,所以,解得t=4,所求圓的方程為(x-1)2+(y-2)2=5.

(3)證明:設(shè)N(x0,y0),則=(x0-1,y0),=(2,t),=(x0-2,y0-t),=(x0,y0).∵,∴2(x0-1)+ty0=0,∴2x0+ty0=2.

,∴x0(x0-2)+y0(y0-t)=0,∴=2x0+ty0=2,∴||=為定值.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點引領(lǐng)+技巧點撥第十一章第3課時練習(xí)卷(解析版) 題型:填空題

(1+x)3(1+y)4的展開式中x2y2的系數(shù)是________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點引領(lǐng)+技巧點撥第九章第8課時練習(xí)卷(解析版) 題型:填空題

雙曲線=1上一點P到右焦點的距離是實軸兩端點到右焦點距離的等差中項,則P點到左焦點的距離為________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點引領(lǐng)+技巧點撥第九章第8課時練習(xí)卷(解析版) 題型:填空題

若雙曲線方程為x2-2y2=1,則它的左焦點的坐標(biāo)為________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點引領(lǐng)+技巧點撥第九章第7課時練習(xí)卷(解析版) 題型:解答題

如圖,在平面直角坐標(biāo)系xOy中,已知F1,F(xiàn)2分別是橢圓E:=1(a>b>0)的左、右焦點,A,B分別是橢圓E的左、右頂點,且+5=0.

(1)求橢圓E的離心率; (2)已知點D(1,0)為線段OF2的中點,M為橢圓E上的動點(異于點A、B),連結(jié)MF1并延長交橢圓E于點N,連結(jié)MD、ND并分別延長交橢圓E于點P、Q,連結(jié)PQ,設(shè)直線MN、PQ的斜率存在且分別為k1、k2,試問是否存在常數(shù)λ,使得k1+λk2=0恒成立?若存在,求出λ的值;若不存在,說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點引領(lǐng)+技巧點撥第九章第7課時練習(xí)卷(解析版) 題型:填空題

已知F1、F2為雙曲線C:x2-y2=1的左、右焦點,點P在C上,∠F1PF2=60°,則|PF1|·|PF2|=________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點引領(lǐng)+技巧點撥第九章第6課時練習(xí)卷(解析版) 題型:填空題

如圖,已知橢圓=1(a>b>0)的左焦點為F,右頂點為A,點B在橢圓上,且BF⊥x軸,直線AB交y軸于點P.若=2,則橢圓的離心率是________.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點引領(lǐng)+技巧點撥第九章第6課時練習(xí)卷(解析版) 題型:填空題

橢圓=1的離心率為________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點引領(lǐng)+技巧點撥第九章第4課時練習(xí)卷(解析版) 題型:解答題

已知圓C的圓心與點P(-2,1)關(guān)于直線y=x+1對稱,直線3x+4y-11=0與圓C相交于A、B兩點,且=6,求圓C的方程.

 

查看答案和解析>>

同步練習(xí)冊答案