考點(diǎn):數(shù)列的求和
專題:等差數(shù)列與等比數(shù)列
分析:(1)由于點(diǎn)P
n(n,S
n)都在函數(shù)f(x)=x
2+2x的圖象上.可得
Sn=n2+2n,當(dāng)n≥2時(shí),a
n=S
n-S
n-1=2n+1,當(dāng)n=1時(shí),a
1=S
1,即可得出.
(2)c
n=t
an=t
2n+1,可得當(dāng)t=1時(shí),數(shù)列{c
n}的前n項(xiàng)和T
n=n,
=
=1.當(dāng)t>0且t≠1時(shí),數(shù)列{c
n}的前n項(xiàng)和T
n=
,
=
.對t分為t>1與0<t<1即可得出.
解答:
解:(1)∵點(diǎn)P
n(n,S
n)都在函數(shù)f(x)=x
2+2x的圖象上.
∴
Sn=n2+2n,
當(dāng)n≥2時(shí),a
n=S
n-S
n-1=n
2+2n-[(n-1)
2+2(n-1)]=2n+1,
當(dāng)n=1時(shí),a
1=S
1=3,上式也成立.
∴a
n=2n+1.
(2)c
n=t
an=t
2n+1,
∴當(dāng)t=1時(shí),數(shù)列{c
n}的前n項(xiàng)和T
n=n,
=
=1.
當(dāng)t>0且t≠1時(shí),數(shù)列{c
n}的前n項(xiàng)和T
n=
,
∴
=
.
當(dāng)t>1時(shí),
=
=
=t
2.
當(dāng)0<t<1時(shí),
=
=1.
綜上可得:
=
.
點(diǎn)評:本題考查了遞推式的應(yīng)用、等比數(shù)列的前n項(xiàng)和公式、數(shù)列極限的運(yùn)算性質(zhì),考查了分類討論的思想方法,考查了推理能力與計(jì)算能力,屬于難題.