【題目】某城市上年度電價為0.80元/千瓦時,年用電量為a千瓦時.本年度計劃將電價降到0.55元/千瓦時~0.75元/千瓦時之間,而居民用戶期望電價為0.40元/千瓦時(該市電力成本價為0.30元/千瓦時)經(jīng)測算,下調(diào)電價后,該城市新增用電量與實際電價和用戶期望電價之差成反比,比例系數(shù)為0.2a.試問當(dāng)?shù)仉妰r最低為多少時,可保證電力部門的收益比上年度至少增加20%.

【答案】解:設(shè)新電價為x元/千瓦時(0.55≤x≤0.75),則新增用電量為 千瓦時.
依題意,有 ,
即(x﹣0.2)(x﹣0.3)≥0.6(x﹣0.4),
整理,得x2﹣1.1x+0.3≥0,
解此不等式,得x≥0.6或x≤0.5,
又0.55≤x≤0.75,
所以,0.6≤x≤0.75,
因此,xmin=0.6,即電價最低為0.6元/千瓦時,可保證電力部門的收益比上一年度至少增加20%.
【解析】設(shè)新電價為x元/千瓦時(0.55≤x≤0.75),則新增用電量為 千瓦時.依題意,有 ,由此能求出電價最低為0.6元/千瓦時,可保證電力部門的收益比上一年度至少增加20%.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《萊因德紙草書》(Rhind Papyrus)是世界上最古老的數(shù)學(xué)著作之一,書中有這樣一道題:把120個面包分成5份,使每份的面包數(shù)成等差數(shù)列,且較多的三份之和恰好是較少的兩份之和的7倍,則最少的那份有( )個面包.
A.4
B.3
C.2
D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,以向量 為鄰邊作平行四邊形OADB, ,用 表示

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義滿足不等式|x﹣A|<B(A∈R,B>0)的實數(shù)x的集合叫做A的B 鄰域.若a+b﹣t(t為正常數(shù))的a+b鄰域是一個關(guān)于原點對稱的區(qū)間,則a2+b2的最小值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知過點A(0,1)且斜率為k的直線l與圓C:(x﹣2)2+(y﹣3)2=1交于點M、N兩點.
(1)求k的取值范圍;
(2)若 =12,其中O為坐標(biāo)原點,求|MN|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知三棱柱ABC﹣A1B1C1的側(cè)棱垂直于底面,且其6個頂點都在球O的球面上,若AB=3,AC=4,AB⊥AC,AA1=12,則球O的半徑為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某電視臺在一次對收看文藝節(jié)目和新聞節(jié)目觀眾的抽樣調(diào)查中,隨機抽取了100名電視觀眾,相關(guān)的數(shù)據(jù)如表所示:

(Ⅰ)用分層抽樣方法在收看新聞節(jié)目的觀眾中隨機抽取5名,大于40歲的觀眾應(yīng)該抽取幾名?
(Ⅱ)在上述抽取的5名觀眾中任取2名,求恰有1名觀眾的年齡為20至40歲的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知α,β∈( ,π),且sinα+cosα=a,cos(β﹣α)=
(1)若a= ,求sinαcosα+tanα﹣ 的值;
(2)若a= ,求sinβ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知O是△ABC內(nèi)一點,若 , 則△AOC與△ABC的面積的比值為 ( )
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案