【題目】已知三棱柱ABC﹣A1B1C1的側(cè)棱垂直于底面,且其6個(gè)頂點(diǎn)都在球O的球面上,若AB=3,AC=4,AB⊥AC,AA1=12,則球O的半徑為

【答案】
【解析】解:因?yàn)槿庵鵄BC﹣A1B1C1的6個(gè)頂點(diǎn)都在球O的球面上,若AB=3,AC=4,AB⊥AC,AA1=12,
所以三棱柱的底面是直角三角形,側(cè)棱與底面垂直,側(cè)面B1BCC1 , 經(jīng)過球的球心,球的直徑是其對(duì)角線的長,
因?yàn)锳B=3,AC=4,BC=5,BC1= =13.
所以球的半徑為:
所以答案是:

【考點(diǎn)精析】根據(jù)題目的已知條件,利用球內(nèi)接多面體的相關(guān)知識(shí)可以得到問題的答案,需要掌握球的內(nèi)接正方體的對(duì)角線等于球直徑;長方體的外接球的直徑是長方體的體對(duì)角線長.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè) .若f(x)=x2+px+q的圖象經(jīng)過兩點(diǎn)(α,0),(β,0),且存在整數(shù)n,使得n<α<β<n+1成立,則( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線 的焦點(diǎn)為,圓 .直線與拋物線交于點(diǎn)、兩點(diǎn),與圓切于點(diǎn).

(1)當(dāng)切點(diǎn)的坐標(biāo)為時(shí),求直線及圓的方程;

(2)當(dāng)時(shí),證明: 是定值,并求出該定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=Asin(ωx+φ)(ω>0,0<φ< )的部分圖象如圖.

(1)求f(x)的解析式;
(2)將函數(shù)y=f(x)的圖象上所有點(diǎn)的縱坐標(biāo)不變,橫坐標(biāo)縮短為原來的 倍,再將所得函數(shù)圖象向右平移 個(gè)單位,得到函數(shù)y=g(x)的圖象,求g(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某城市上年度電價(jià)為0.80元/千瓦時(shí),年用電量為a千瓦時(shí).本年度計(jì)劃將電價(jià)降到0.55元/千瓦時(shí)~0.75元/千瓦時(shí)之間,而居民用戶期望電價(jià)為0.40元/千瓦時(shí)(該市電力成本價(jià)為0.30元/千瓦時(shí))經(jīng)測算,下調(diào)電價(jià)后,該城市新增用電量與實(shí)際電價(jià)和用戶期望電價(jià)之差成反比,比例系數(shù)為0.2a.試問當(dāng)?shù)仉妰r(jià)最低為多少時(shí),可保證電力部門的收益比上年度至少增加20%.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是圓O的直徑,PA⊥圓O所在的平面,C是圓O上的點(diǎn).

(1)求證:BC⊥平面PAC;
(2)若Q為PA的中點(diǎn),G為△AOC的重心,求證:QG∥平面PBC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某網(wǎng)站針對(duì)2014年中國好聲音歌手A,B,C三人進(jìn)行網(wǎng)上投票,結(jié)果如下:

觀眾年齡

支持A

支持B

支持C

20歲以下

200

400

800

20歲以上(含20歲)

100

100

400

(1)在所有參與該活動(dòng)的人中,用分層抽樣的方法抽取n人,其中有6人支持A,求n的值.
(2)在支持C的人中,用分層抽樣的方法抽取6人作為一個(gè)總體,從這6人中任意選取2人,求恰有1人在20歲以下的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知α,β為銳角, =cos(α+β).
(1)求tan(α+β)cotα的值;
(2)求tanβ的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,內(nèi)角A、B、C的對(duì)邊分別是a、b、c,且b2+c2﹣a2=bc.
(1)求A;
(2)若a= ,sinBsinC=sin2A,求△ABC的周長.

查看答案和解析>>

同步練習(xí)冊答案