6.如圖,在三棱柱ABC-A1B1C1中,AA1⊥平面ABC,△ABC為正三角形,AA1=AB=6,點D為AC的中點.
(1)求證:平面BC1D⊥平面ACC1A1
(2)求三棱錐C-BC1D的體積.

分析 (Ⅰ)推導(dǎo)出AA1⊥BD,BD⊥AC,從而BD⊥平面ACC1A1,由此能證明平面BC1D⊥平面ACC1A1
(Ⅱ)三棱錐C-BC1D的體積${V_{C-B{C_1}D}}={V_{{C_1}-CBD}$,由此能求出結(jié)果.

解答 證明:(Ⅰ)因為AA1⊥底面ABC,所以AA1⊥BD,
因為底面ABC正三角形,D是AC的中點,所以BD⊥AC,
因為AA1∩AC=A,所以BD⊥平面ACC1A1,
因為平面BD?平面BC1D,
所以平面BC1D⊥平面ACC1A1
解:(Ⅱ)由(Ⅰ)知△ABC中,BD⊥AC,$BD=BCsin60°=3\sqrt{3}$
所以${S_{△BCD}}=\frac{1}{2}×3×3\sqrt{3}=\frac{{9\sqrt{3}}}{2}$
所以三棱錐C-BC1D的體積.${V_{C-B{C_1}D}}={V_{{C_1}-CBD}}=\frac{1}{3}×\frac{{9\sqrt{3}}}{2}×6=9\sqrt{3}$

點評 本題考查面面垂直的證明,考查三棱錐的體積的求法,是中檔題,解題時要認真審題,注意空間中線線、線面、面面間的位置關(guān)系的合理運用.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知全集為R,M={x|x(x-3)<0},N={x|x<1或x≥3},則正確的為(  )
A.M⊆NB.N⊆MC.RN⊆MD.M⊆∁RN

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知$cos(\frac{π}{6}-x)=-\frac{{\sqrt{3}}}{3}$,則$cos(\frac{5π}{6}+x)+sin(\frac{2π}{3}-x)$=( 。
A.$-\sqrt{3}$B.-1C.0D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知數(shù)列{an}滿足${a_1}+{a_3}=\frac{5}{8},{a_{n+1}}=2{a_n}$,其前n項和為Sn,則Sn-2an的值為-$\frac{1}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.從甲、乙、丙三個廠家生產(chǎn)的同一種產(chǎn)品中各抽取8件產(chǎn)品,對其使用壽命(單位:年)跟蹤調(diào)查結(jié)果
如下:
甲:3,4,5,6,8,8,8,10;
乙:4,6,6,6,8,9,12,13;
丙:3,3,4,7,9,10,11,12.
三個廠家在廣告中都稱該產(chǎn)品的使用壽命是8年,請根據(jù)結(jié)果判斷廠家在廣告中分別運用了平均數(shù)、眾數(shù)、中位數(shù)中的哪一種集中趨勢的特征數(shù):甲眾數(shù),乙平均數(shù),丙中位數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若cos θ=-$\frac{3}{5}$,且180°<θ<270°,則tan $\frac{θ}{2}$的值為( 。
A.2B.-2C.±2D.±$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.在等比數(shù)列{an}中,a1+a3=10,前4項和S4=30,則公比q等于2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若二次函數(shù)f(x)=x2+ax+4在區(qū)間(-∞,3)單調(diào)遞減,則a的取值范圍是(  )
A.(-6,+∞)B.[-6,+∞)C.(-∞,-6)D.(-∞,-6]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.函數(shù)y=x2+bx-4在(-∞,-1]上是減函數(shù),在[-1,+∞)上是增函數(shù),則(  )
A.b<0B.b>0C.b=0D.b的符號不定

查看答案和解析>>

同步練習冊答案