【題目】定義在上的單調(diào)遞減函數(shù),對(duì)任意都有,

(Ⅰ)判斷函數(shù)的奇偶性,并證明之;

(Ⅱ)若對(duì)任意,不等式為常實(shí)數(shù))都成立,求的取值范圍;(Ⅲ)設(shè), , ,

,比較的大小并說(shuō)明理由.

【答案】(Ⅰ)上的奇函數(shù);證明見(jiàn)解析(Ⅱ)(Ⅲ);

【解析】試題分析】Ⅰ)先取取,再取

,進(jìn)而可得對(duì)任意都有,運(yùn)用定義可證上奇函數(shù);(先借助函數(shù)的奇偶性、單調(diào)性將不等式進(jìn)行等價(jià)轉(zhuǎn)化為,再將不等式中的參數(shù)分離出來(lái),將該不等式化為“上恒成立”問(wèn)題,最后通過(guò)求函數(shù)

的值域即可;(Ⅲ)先依據(jù)題設(shè)條件將的解析式化簡(jiǎn)求出,再進(jìn)行分析比較其大。

(Ⅰ)解: 上的奇函數(shù)

證明:取

即:對(duì)任意都有

上奇函數(shù)

(Ⅱ)∵

上單減

上恒成立

上恒成立

上恒成立

∴當(dāng)時(shí),

(Ⅲ)

單增,在上單減

同理:

。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某日用品按行業(yè)質(zhì)量標(biāo)準(zhǔn)分成五個(gè)等級(jí),等級(jí)系數(shù)X依次為1,2,3,4,5.現(xiàn)從一批該日用品中隨機(jī)抽取20件,對(duì)其等級(jí)系數(shù)進(jìn)行統(tǒng)計(jì)分析,得到頻率分布表如下:

X

1

2

3

4

5

頻率

a

02

045

b

c

1)若所抽取的20件日用品中,等級(jí)系數(shù)為4的恰有3件,等級(jí)系數(shù)為5的恰有2件,求a,bc的值;

2)在(1)的條件下,將等級(jí)系數(shù)為43件日用品記為,等級(jí)系數(shù)為52件日用品記為,現(xiàn)從, 5件日用品中任取兩件(假定每件日用品被取出的可能性相同),求這兩件日用品的等級(jí)系數(shù)恰好相等的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,函數(shù)

1求證:曲線在點(diǎn)處的切線過(guò)定點(diǎn);

2在區(qū)間上的極大值,但不是最大值,求實(shí)數(shù)的取值范圍;

3求證:對(duì)任意給定的正數(shù) ,總存在,使得上為單調(diào)函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)等差數(shù)列是無(wú)窮數(shù)列,且各項(xiàng)均為互不相同的正整數(shù),其前項(xiàng)和為,數(shù)列滿足.

(1)若,求的值;

(2)若數(shù)列為等差數(shù)列,求;

(3)在(1)的條件下,求證:數(shù)列中存在無(wú)窮多項(xiàng)(按原來(lái)的順序)成等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠2萬(wàn)元設(shè)計(jì)了某款式的服裝,根據(jù)經(jīng)驗(yàn),每生產(chǎn)1百套該款式服裝的成本為1萬(wàn)元,每生產(chǎn)(百套)的銷(xiāo)售額(單位:萬(wàn)元).

(1)若生產(chǎn)6百套此款服裝,求該廠獲得的利潤(rùn);

(2)該廠至少生產(chǎn)多少套此款式服裝才可以不虧本?

(3)試確定該廠生產(chǎn)多少套此款式服裝可使利潤(rùn)最大,并求最大利潤(rùn).(注:利潤(rùn)=銷(xiāo)售額-成本,其中成本=設(shè)計(jì)費(fèi)+生產(chǎn)成本)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校男女籃球隊(duì)各有10名隊(duì)員,現(xiàn)將這20名隊(duì)員的身高繪制成莖葉圖(單位:).男隊(duì)員身高在以上定義為“高個(gè)子”,女隊(duì)員身高在以上定義為“高個(gè)子”,其他隊(duì)員定義為“非高個(gè)子”,按照“高個(gè)子”和“非高個(gè)子”用分層抽樣的方法共抽取5名隊(duì)員.

(1)從這5名隊(duì)員中隨機(jī)選出2名隊(duì)員,求這2名隊(duì)員中有“高個(gè)子”的概率;

(2)求這5名隊(duì)員中,恰好男女“高個(gè)子”各1名隊(duì)員的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在某次綜合素質(zhì)測(cè)試中,共設(shè)有60個(gè)考場(chǎng),每個(gè)考場(chǎng)30名考生,在考試結(jié)束后,為調(diào)查其測(cè)試前的培訓(xùn)輔導(dǎo)情況與測(cè)試成績(jī)的相關(guān)性,抽取每個(gè)考場(chǎng)中座位號(hào)為06的考生,統(tǒng)計(jì)了他們的成績(jī),得到如圖所示的頻率分布直方圖.

問(wèn):

在這個(gè)調(diào)查采樣中,采用的是什么抽樣方法?

估計(jì)這次測(cè)試中優(yōu)秀(80分及以上)的人數(shù);

寫(xiě)出這60名考生成績(jī)的眾數(shù)、中位數(shù)、平均數(shù)的估計(jì)值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)列滿足, .

(1)證明:數(shù)列是等差數(shù)列;

(2)設(shè),數(shù)列的前項(xiàng)和為,對(duì)任意的, , 恒成立,求正數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐的底面為直角梯形,

,平面底面,的中點(diǎn),為正三角形,是棱上的一點(diǎn)(異于端點(diǎn)).

)若中點(diǎn),求證:平面

)是否存在點(diǎn),使二面角的大小為30°.若存在,求出點(diǎn)的位置;若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案