【題目】已知m≠0,向量 =(m,3m),向量 =(m+1,6),集合A={x|(x﹣m2)(x+m﹣2)=0}.
(1)判斷“ ∥ ”是“| |= ”的什么條件
(2)設(shè)命題p:若 ⊥ ,則m=﹣19,命題q:若集合A的子集個(gè)數(shù)為2,則m=1,判斷p∨q,p∧q,¬q的真假,并說明理由.
【答案】
(1)解:若 ,則6m=3m(m+1),∴m=1(m=0舍去),此時(shí), ,
若 ,則m=±1,故“ ”是“ ”的充分不必要條件
(2)解:若 ,則m(m+1)+18m=0,∴m=﹣19(m=0舍去),∴p為真命題.
由(x﹣m2)(x+m﹣2)=0得x=m2,或x=2﹣m,若集合A的子集個(gè)數(shù)為2,則集合A中只有1個(gè)元素,
則m2=2﹣m,解得m=1或﹣2,∴q為假命題.
∴p∨q為真命題,p∧q為假命題,¬q為真命題
【解析】【(1)由 ,則6m=3m(m+1解出m即可判斷出結(jié)論.(2)若 ,則m(m+1)+18m=0,解出m,即可判斷出p真假.由(x﹣m2)(x+m﹣2)=0得x=m2,或x=2﹣m,若集合A的子集個(gè)數(shù)為2,則集合A中只有1個(gè)元素,
則m2=2﹣m,解得m,即可判斷出真假.
【考點(diǎn)精析】通過靈活運(yùn)用復(fù)合命題的真假,掌握“或”、 “且”、 “非”的真值判斷:“非p”形式復(fù)合命題的真假與F的真假相反;“p且q”形式復(fù)合命題當(dāng)P與q同為真時(shí)為真,其他情況時(shí)為假;“p或q”形式復(fù)合命題當(dāng)p與q同為假時(shí)為假,其他情況時(shí)為真即可以解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形 的邊長為2, 為 的中點(diǎn),射線 從 出發(fā),繞著點(diǎn) 順時(shí)針方向旋轉(zhuǎn)至 ,在旋轉(zhuǎn)的過程中,記 為 , 所經(jīng)過的在正方形 內(nèi)的區(qū)域(陰影部分)的面積 ,那么對(duì)于函數(shù) 有以下三個(gè)結(jié)論:
① ;② 對(duì)任意 ,都有 ;
③ 對(duì)任意 ,且 ,都有 ;
其中所有正確結(jié)論的序號(hào)是;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=lnx﹣2ax(其中a∈R).
(Ⅰ)當(dāng)a=1時(shí),求函數(shù)f(x)的圖象在x=1處的切線方程;
(Ⅱ)若f(x)≤1恒成立,求a的取值范圍;
(Ⅲ)設(shè)g(x)=f(x)+ x2 , 且函數(shù)g(x)有極大值點(diǎn)x0 , 求證:x0f(x0)+1+ax02>0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)a,b∈R,函數(shù) ,g(x)=ex(e為自然對(duì)數(shù)的底數(shù)),且函數(shù)f(x)的圖象與函數(shù)g(x)的圖象在x=0處有公共的切線.
(Ⅰ)求b的值;
(Ⅱ)討論函數(shù)f(x)的單調(diào)性;
(Ⅲ)若g(x)>f(x)在區(qū)間(﹣∞,0)內(nèi)恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=f(x)是R上的偶函數(shù),且當(dāng)x≤0時(shí),f(x)=log (1﹣x)+x.
(1)求f(1)的值;
(2)求函數(shù)y=f(x)的表達(dá)式,并直接寫出其單調(diào)區(qū)間(不需要證明);
(3)若f(lga)+2<0,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)的定義域是(0,+∞),f'(x)為f(x)的導(dǎo)函數(shù),且滿足f(x)<f'(x),則不等式 f(2)的解集是( )
A.(﹣∞,2)∪(1,+∞)
B.(﹣2,1)
C.(﹣∞,﹣1)∪(2,+∞)
D.(﹣1,2)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax3﹣bx+2(a>0)
(1)在x=1時(shí)有極值0,試求函數(shù)f(x)的解析式;
(2)求f(x)在x=2處的切線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱ABC﹣A1B1C1中,面ABB1A1為矩形,AB=1,AA1= ,D為AA1的中點(diǎn),BD與AB1交于點(diǎn)O,CO⊥面ABB1A1
(Ⅰ)證明:BC⊥AB1
(Ⅱ)若OC=OA,求二面角A﹣BC﹣B1的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com