分析 根據(jù)$|\overrightarrow{a}|=4,|\overrightarrow|=2$,進(jìn)行數(shù)量積的運(yùn)算,便可由$(\overrightarrow{a}+2\overrightarrow)•(\overrightarrow{a}+\overrightarrow)=12$求出$cos<\overrightarrow{a},\overrightarrow>$的值,進(jìn)而求出向量$\overrightarrow{a},\overrightarrow$的夾角.
解答 解:根據(jù)條件:
$(\overrightarrow{a}+2\overrightarrow)•(\overrightarrow{a}+\overrightarrow)={\overrightarrow{a}}^{2}+2{\overrightarrow}^{2}+3\overrightarrow{a}•\overrightarrow$=$16+8+24cos<\overrightarrow{a},\overrightarrow>=12$;
∴$cos<\overrightarrow{a},\overrightarrow>=-\frac{1}{2}$;
又$0≤<\overrightarrow{a},\overrightarrow>≤π$;
∴$\overrightarrow{a}$與$\overrightarrow$的夾角為$\frac{2π}{3}$.
故答案為:$\frac{2π}{3}$.
點(diǎn)評(píng) 本題考查數(shù)量積的運(yùn)算及計(jì)算公式,向量夾角的范圍,已知三角函數(shù)值求角.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $a+\frac{1}>b+\frac{1}{a}$ | B. | $\frac{a}>\frac{b+1}{a+1}$ | C. | $a-\frac{1}>b-\frac{1}{a}$ | D. | $\frac{2a+b}{a+2b}>\frac{a}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | -$\frac{1}{3}$ | C. | $\frac{1}{12}$ | D. | -$\frac{1}{12}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com