【題目】已知拋物線C的焦點在y軸上,焦點到準線的距離為2,且對稱軸為y.

1)求拋物線C的標準方程;

2)當拋物線C的焦點為時,過F作直線交拋物線于,A、B兩點,若直線OA,OBO為坐標原點)分別交直線M、N兩點,求的最小值.

【答案】1;(2

【解析】

1)根據(jù)拋物線的定義即可求出拋物線方程;

2)由題意可得拋物線C的方程為,設,,直線AB的方程為,聯(lián)立直線與拋物線方程,利用韋達定理求得,聯(lián)立方程求得點M、N的橫坐標,則,利用換元法求最值即可得出答案.

解:(1)當焦點在y軸正半軸時,設拋物線C標準方程為,

,所以拋物線C的方程為,

當焦點在y軸負半軸時,設拋物線C標準方程為

,所以拋物線C的方程為;

2)依題意,拋物線C的方程為,設,直線AB的方程為,

消去y整理可得:

,,∴,

,解得點M的橫坐標為,

同理可得點N的橫坐標為,

,,則

時,

時,,

此時,則,

綜上:的最小值

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,平面平面,,是等邊三角形,已知,

(1)設上的一點,證明:平面平面;

(2)求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本小題滿分12分)一個盒子里裝有三張卡片,分別標記有數(shù)字,,,這三張卡片除標記的數(shù)字外完全相同。隨機有放回地抽取次,每次抽取張,將抽取的卡片上的數(shù)字依次記為,.

)求抽取的卡片上的數(shù)字滿足的概率;

)求抽取的卡片上的數(shù)字,不完全相同的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四邊形是邊長為2的正方形,的中點,以為折痕把折起,使點到達點的位置,且.

(1)求證:平面平面;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】[選修4-4:坐標系與參數(shù)方程]

在直角坐標系中,曲線為參數(shù)).以原點為極點,軸的正半軸為極軸建立極坐標系,直線的極坐標方程為.

(1)求曲線的普通方程和直線的直角坐標方程;

(2)若曲線與直線交于兩點,點,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】微信作為一款社交軟件已經(jīng)在支付,理財,交通,運動等各方面給人的生活帶來各種各樣的便利.手機微信中的“微信運動”,不僅可以看自己每天的運動步數(shù),還可以看到朋友圈里好友的步數(shù). 先生朋友圈里有大量好友使用了“微信運動”這項功能.他隨機選取了其中40名,記錄了他們某一天的走路步數(shù),統(tǒng)計數(shù)據(jù)如下表所示:

(1)以樣本估計總體,視樣本頻率為概率,在先生的微信朋友圈里的男性好友中任意選取3名,其中走路步數(shù)不低于6000步的有名,求的分布列和數(shù)學期望;

(2)如果某人一天的走路步數(shù)不低于8000步,此人將被“微信運動”評定為“運動達人”,否則為“運動鳥人”.根據(jù)題意完成下面的列聯(lián)表,并據(jù)此判斷能否有90%以上的把握認為“評定類型”

與“性別”有關?

附:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給出下列四個命題:①成立的必要不充分條件②命題,則的否命題是:,則;③命題,使得的否定是:,均有④如果命題與命題都是真命題,那么命題一定是真命題;其中為真命題的個數(shù)是(

A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】筒車是我國古代發(fā)明的一種水利灌溉工具,明朝科學家徐光啟在《農(nóng)政全書》中用圖畫描繪了筒車的工作原理(如圖1).因其經(jīng)濟又環(huán)保,至今還在農(nóng)業(yè)生產(chǎn)中得到使用(如圖2).假定在水流量穩(wěn)定的情況下,筒車上的每一個盛水筒都做勻速圓周運動.因筒車上盛水筒的運動具有周期性,可以考慮利用三角函數(shù)模型刻畫盛水筒(視為質(zhì)點)的運動規(guī)律.將筒車抽象為一個幾何圖形,建立直角坐標系(如圖3).設經(jīng)過t秒后,筒車上的某個盛水筒從點P0運動到點P.由筒車的工作原理可知,這個盛水筒距離水面的高度H(單位: ),由以下量所決定:筒車轉(zhuǎn)輪的中心O到水面的距離h,筒車的半徑r,筒車轉(zhuǎn)動的角速度ω(單位: ),盛水筒的初始位置P0以及所經(jīng)過的時間t(單位: ).已知r=3,h=2,筒車每分鐘轉(zhuǎn)動(按逆時針方向)1.5圈, P0距離水面的高度為3.5,若盛水筒M從點P0開始計算時間,則至少需要經(jīng)過_______就可到達最高點;若將點距離水面的高度表示為時間的函數(shù),則此函數(shù)表達式為_________

1 2 3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓C經(jīng)過A53),B44)兩點,且圓心在x軸上.

1)求圓C的標準方程;

2)若直線l過點(5,2),且被圓C所截得的弦長為6,求直線l的方程.

查看答案和解析>>

同步練習冊答案