【題目】程序框圖如圖所示,若其輸出結(jié)果是140,則判斷框中填寫的是(

A.B.C.D.

【答案】B

【解析】

當(dāng)S=0,i=1,應(yīng)滿足繼續(xù)循環(huán)的條件,執(zhí)行完循環(huán)體后,S=1,i
當(dāng)S=1,i=2,應(yīng)滿足繼續(xù)循環(huán)的條件,執(zhí)行完循環(huán)體后,S=5,i=3,
當(dāng)S=5,i=3,應(yīng)滿足繼續(xù)循環(huán)的條件,執(zhí)行完循環(huán)體后,S=14,i=4
當(dāng)S=14,i=4,應(yīng)滿足繼續(xù)循環(huán)的條件,執(zhí)行完循環(huán)體后,S=30,i=5
當(dāng)S=30,i=5,應(yīng)滿足繼續(xù)循環(huán)的條件,執(zhí)行完循環(huán)體后,S=55,i=6

當(dāng)S=55, i =6,應(yīng)滿足繼續(xù)循環(huán)的條件,執(zhí)行完循環(huán)體后,S=91,i=7
應(yīng)滿足繼續(xù)循環(huán)的條件,執(zhí)行完循環(huán)體后,S=140,i=8
當(dāng)S=140,i=8,應(yīng)不滿足繼續(xù)循環(huán)的條件
故循環(huán)條件應(yīng)為
故選:B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;

2)設(shè)函數(shù),其中是自然對數(shù)的底數(shù),判斷有無極值,有極值時求出極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某健身館在20197、8兩月推出優(yōu)惠項目吸引了一批客戶.為預(yù)估20207、8兩月客戶投入的健身消費金額,健身館隨機抽樣統(tǒng)計了20197、8兩月100名客戶的消費金額,分組如下:,,,,(單位:元),得到如圖所示的頻率分布直方圖:

1)請用抽樣的數(shù)據(jù)預(yù)估20207、8兩月健身客戶人均消費的金額(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);

2)若把20197、8兩月健身消費金額不低于800元的客戶,稱為健身達人,經(jīng)數(shù)據(jù)處理,現(xiàn)在列聯(lián)表中得到一定的相關(guān)數(shù)據(jù),請補全空格處的數(shù)據(jù),并根據(jù)列聯(lián)表判斷是否有的把握認(rèn)為健身達人與性別有關(guān)?

健身達人

非健身達人

總計

10

30

總計

3)為吸引顧客,在健身項目之外,該健身館特別推出健身配套營養(yǎng)品的銷售,現(xiàn)有兩種促銷方案.

方案一:每滿800元可立減100元;

方案二:金額超過800元可抽獎三次,每次中獎的概率為,且每次抽獎互不影響,中獎1次打9折,中獎2次打8折,中獎3次打7.

若某人打算購買1000元的營養(yǎng)品,請從實際付款金額的數(shù)學(xué)期望的角度分析應(yīng)該選擇哪種優(yōu)惠方案.

附:

0.150

0.100

0.050

0.010

0.005

2.072

2.706

3.841

6.635

7.879

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題:,為異面直線,平面過直線且與直線平行,則直線與平面的距離等于異面直線,之間的距離為真命題.根據(jù)上述命題,若,為異面直線,且它們之間的距離為,則空間中與,均異面且距離也均為的直線的條數(shù)為(

A.0B.1C.多于1條,但為有限條D.無數(shù)多條

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】海水稻就是耐鹽堿水稻,是一種介于野生稻和栽培稻之間的普遍生長在海邊灘涂地區(qū)的水稻,具有抗旱抗?jié)、抗病蟲害、抗倒伏抗鹽堿等特點.近年來,我國的海水稻研究取得了階段性成果,目前已開展了全國大范圍試種.某農(nóng)業(yè)科學(xué)研究所分別抽取了試驗田中的海水稻以及對照田中的普通水稻各株,測量了它們的根系深度(單位:),得到了如下的莖葉圖,其中兩豎線之間表示根系深度的十位數(shù),兩邊分別是海水稻和普通水稻根系深度的個位數(shù),則下列結(jié)論中不正確的是(

A.海水稻根系深度的中位數(shù)是

B.普通水稻根系深度的眾數(shù)是

C.海水稻根系深度的平均數(shù)大于普通水稻根系深度的平均數(shù)

D.普通水稻根系深度的方差小于海水稻根系深度的方差

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于由有限個自然數(shù)組成的集合A,定義集合S(A)={a+b|a∈A,b∈A},記集合S(A)的元素個數(shù)為d(S(A)).定義變換T,變換T將集合A變換為集合T(A)=A∪S(A).

(1)若A={0,1,2},求S(A),T(A);

(2)若集合A有n個元素,證明:“d(S(A))=2n-1”的充要條件是“集合A中的所有元素能組成公差不為0的等差數(shù)列”;

(3)若A{1,2,3,4,5,6,7,8}且{1,2,3,…,25,26}T(T(A)),求元素個數(shù)最少的集合A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】提高過江大橋的車輛通行能力可改善整個城市的交通狀況,在一般情況下,大橋上的車流速度v(單位:千米/小時)是車流密度x(單位:輛/千米)的函數(shù),當(dāng)橋上的車流密度達到200/千米時,造成堵塞,此時車流速度為0;當(dāng)車流密度不超過20/千米時,車流速度為60千米/小時,研究表明:當(dāng)20≤x≤200時,車流速度v是車流密度x的一次函數(shù).

1)當(dāng)0≤x≤200時,求函數(shù)vx)的表達式;

2)當(dāng)車流密度x為多大時,車流量(單位時間內(nèi)通過橋上某觀測點的車輛數(shù),單位:輛/小時)fx=xvx)可以達到最大,并求出最大值.(精確到1/小時).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校為了普及環(huán)保知識,增強學(xué)生的環(huán)保意識,在全校組織了一次有關(guān)環(huán)保知識的競賽,經(jīng)過初賽、復(fù)賽,甲、乙兩個代表隊(每隊人)進入了決賽,規(guī)定每人回答一個問題,答對為本隊贏得分,答錯得分,假設(shè)甲隊中每人答對的概率均為,乙隊中人答對的概率分別為,且各人回答正確與否相互之間沒有影響,用表示乙隊的總得分.

(1)求的分布列;

(2)求甲、乙兩隊總得分之和等于分且甲隊獲勝的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),,函數(shù),記.把函數(shù)的最大值稱為函數(shù)線性擬合度”.

1)設(shè)函數(shù),,,求此時函數(shù)線性擬合度;

2)若函數(shù),的值域為),,求證:;

3)設(shè),,求的值,使得函數(shù)線性擬合度最小,并求出的最小值.

查看答案和解析>>

同步練習(xí)冊答案