15.某工件的三視圖如圖所示,現(xiàn)將該工件通過切割,加工成一個體積盡可能大的正方體新工件,并使新工件的一個面落在原工件的一個面內,則新工件的體積為( 。
A.$\frac{1}{8}$B.1C.2D.$\frac{4π}{3}$

分析 依題意知該工件為圓錐,底面半徑為$\sqrt{2}$,高為2,要使加工成的正方體新工件體積最大,則該正方體為圓錐的內接正方體,即可得出結論.

解答 解:依題意知該工件為圓錐,底面半徑為$\sqrt{2}$,高為2,要使加工成的正方體新工件體積最大,則該正方體為圓錐的內接正方體,設棱長為2x,則有$\frac{\sqrt{2}x}{\sqrt{2}}=\frac{2-2x}{2}$,解得x=$\frac{1}{2}$,故2x=1,故新工件的體積為1.
故選B.

點評 本題考查三視圖與直觀圖的轉化,考查學生分析解決問題的能力,確定要使加工成的正方體新工件體積最大,則該正方體為圓錐的內接正方體是關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

5.已知曲線C的極坐標方程是ρ=2cosθ,以極點為平面直角坐標系的原點,極軸為x軸的非負半軸,建立平面直角坐標系xOy,若將曲線C向左平移1個單位長度后就得到了曲線C1,再將曲線C1上每一點的橫坐標伸長為原來的$\sqrt{3}$倍,縱坐標保持不變就得到了曲線C2,已知直線l:x-y-6=0.
(1)求曲線C1上的點到直線l的距離的最大值;
(2)過點M(-1,0)且與直線l平行的直線l1交C2于A,B兩點,求點M到A,B兩點的距離之積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.若函數(shù)y=2sinωx(ω>0)在[-$\frac{π}{3}$,$\frac{π}{4}$]上的最小值是-2,但最大值不是2,則ω的取值范圍是( 。
A.(0,2)B.[$\frac{3}{2}$,2)C.(0,$\frac{3}{2}$]D.[2,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.數(shù)列{an}的各項均為正數(shù),其前n項和為Sn,已知$\frac{n{a}_{n+1}}{{a}_{n}}$$-\frac{(n+1){a}_{n}}{{a}_{n+1}}$=1,且a1=$\frac{π}{3}$,則tanSn的取值集合是(  )
A.{0,$\sqrt{3}$}B.{0,$\sqrt{3}$,$\frac{\sqrt{3}}{3}$}C.{0,$\sqrt{3}$,-$\frac{\sqrt{3}}{3}$}D.{0,$\sqrt{3}$,-$\sqrt{3}$}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知函數(shù)f(x)=|x-4|,g(x)=a|x|,a∈R.
(Ⅰ)當a=2時,解關于x的不等式f(x)>2g(x)+1;
(Ⅱ)若不等式f(x)≥g(x)-4對任意x∈R恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.若復數(shù)z滿足$\frac{zi}{z-i}$=1,其中i為虛數(shù)單位,則復數(shù)z的模為( 。
A.$\frac{\sqrt{2}}{2}$B.$\sqrt{2}$C.2$\sqrt{2}$D.4$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.設函數(shù)f(x)=$\left\{\begin{array}{l}{1+cos\frac{πx}{2},x>1}\\{x^2,0<x≤1}\end{array}\right.$,函數(shù)g(x)=x+$\frac{1}{x}$+a(x>0),若存在唯一的x0,使得h(x)=min{f(x),g(x)}的值為h(x0),則實數(shù)a的取值范圍為(-∞,-2).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.如圖是一個幾何體挖去另一個幾何體所得的三視圖,若主視圖中長方形的長為2,寬為1,則該幾何體的體積為( 。
A.$\frac{π}{2}$B.$\frac{π}{4}$C.$\frac{2π}{3}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.在直角坐標系xOy中,直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=3+t}\\{y=1+at}\end{array}\right.$(t為參數(shù),a∈R),曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=2+2cosα}\\{y=2sinα}\end{array}\right.$(α為參數(shù)),設直線l與曲線C交于A、B兩點,當弦長|AB|最短時,直線l的普通方程為x+y-4=0.

查看答案和解析>>

同步練習冊答案